Great care is taken in the compilation and production of this book, but it should be made clear that NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE GIVEN IN CONNECTION WITH THIS PUBLICATION. Although this information is believed to be accurate by ASM, ASM cannot guarantee that favorable results will be obtained from the use of this publication alone. This publication is intended for use by persons having technical skill, at their sole discretion and risk. Since the conditions of product or material use are outside of ASM’s control, ASM assumes no liability or obligation in connection with any use of this information. No claim of any kind, whether as to products or information in this publication, and whether or not based on negligence, shall be greater in amount than the purchase price of this product or publication in respect of which damages are claimed. THE REMEDY HEREBY PROVIDED SHALL BE THE EXCLUSIVE AND SOLE REMEDY OF BUYER, AND IN NO EVENT SHALL EITHER PARTY BE LIABLE FOR SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES WHETHER OR NOT CAUSED BY OR RESULTING FROM THE NEGLIGENCE OF SUCH PARTY. As with any material, evaluation of the material under end-use conditions prior to specification is essential. Therefore, specific testing under actual conditions is recommended.

Nothing contained in this book shall be construed as a grant of any right of manufacture, sale, use, or reproduction, in connection with any method, process, apparatus, product, composition, or system, whether or not covered by letters patent, copyright, or trademark, and nothing contained in this book shall be construed as a defense against any alleged infringement of letters patent, copyright, or trademark, or as a defense against liability for such infringement.

Comments, criticisms, and suggestions are invited and should be forwarded to ASM International.

ASM International staff who worked on this project include Scott Henry, Assistant Director of Reference Publications; Bonnie Sanders, Manager of Production; and Nancy Hrivnak, Jill Kinson, and Carol Polakowski, Production Editors.

Library of Congress Cataloging-in-Publication Data

p. ; cm.
Includes bibliographical references and index.
R857.M3H355 2003
610’.28’’—dc22
2003057730

SAN:204-7586

ASM International®
Materials Park, OH 44073-0002
www.asminternational.org

Printed in the United States of America
Contents

Preface .. vii

Introduction

Chapter 1 Overview of Biomaterials and Their Use in Medical Devices 1
 Uses for Biomaterials ... 1
 Types of Biomaterials ... 3
 Examples of Biomaterials Applications 5

Chapter 2 Physical and Mechanical Requirements for Medical Device Materials ... 13
 Biomaterials: A Brief Overview .. 13
 Body Conditions ... 13
 Biocompatibility ... 14
 Mechanical Behavior .. 15
 Elastic Modulus .. 16
 Corrosion .. 16
 Sterilization of Implants ... 18

Medical Applications

Chapter 3 Metallic Materials ... 21
 Stainless Steels .. 22
 Cobalt-Base Alloys .. 31
 Titanium and Titanium-Base Alloys 38
 Comparison of Orthopedic Implant Materials 45
 Shape Memory Alloys .. 45
 Other Metallic Materials Used for Medical Devices 47

Chapter 4 Corrosion of Metallic Implants and Prosthetic Devices 51
 Historical Background .. 51
 Types of Metals Used ... 52
 Significance of Corrosion ... 59
 Surface Effects and Ion Release .. 60
 Standards .. 60
 Electrochemistry and Basic Corrosion Processes 60
 Forms of Corrosion in Implant Materials 63
Noble Metals and Base Metals Used in Dentistry ... 197
Noble Metal Casting Alloys ... 198
Crown and Bridge and Partial Denture Base Metal Alloys 199
Porcelain-Fused-to-Metal Alloys ... 201
Wrought Alloys for Orthodontic Wires ... 204
Alloys for Dental Implants ... 205
Soldering Alloys .. 206
Alloys for Dental Instruments .. 207
Ceramics ... 208
Glass-Ceramic Prosthetics Formed by a Casting Process 210
Glass Implant Materials .. 212
Composite Dental Materials .. 213
Dental Cements ... 215
Polymers ... 216

Chapter 11 Tarnish and Corrosion of Dental Alloys 221
Overview of Dental Devices and Alloys ... 221
Tarnish and Corrosion Resistance ... 224
Interstitial versus Oral Fluid Environments and Artificial Solutions 228
Effect of Saliva Composition on Alloy Tarnish and Corrosion 232
Oral Corrosion Pathways and Electrochemical Properties 233
Oral Corrosion Processes .. 237
Nature of the Intraoral Surface ... 242
Classification and Characterization of Dental Alloys 245
Tarnish and Corrosion under Simulated or Accelerated Conditions 264

Chapter 12 Friction and Wear of Dental Materials 283
Human Dental Tissues .. 283
Wear Studies ... 286
Dental Amalgam ... 291
Composite Restorative Materials ... 292
Pit and Fissure Sealants ... 298
Dental Cements .. 299
Noble and Base Metal Alloys .. 299
Porcelain and Plastic Denture Teeth .. 300
Denture Acrylics ... 301
Dental Feldspathic Porcelain and Ceramics .. 301
Die Materials (Stone, Resin, and Metal) ... 302
Endodontic Instruments .. 302
Periodontal Instruments .. 304
Orthodontic Wires ... 304

Index .. 317
Preface

In January of 2000, the National Institutes of Health (NIH) estimated that 8 to 10% of Americans, or about 20 to 25 million people, had some sort of medical device implanted in their bodies (refer to the NIH Technology Assessment Conference on Implants, held 10–12 Jan 2000 in Bethesda, MD). In the United States, the market for orthopedic implant devices such as total knee and hip replacements, spinal implants, and bone fixation devices, exceeds two billion dollars per year. Worldwide, this market exceeds $4.3 billion per year. These numbers, which clearly demonstrate the economic impact of the medical device industry, should continue to rise due to the combination of advances in the medical and materials science fields and an aging population (particularly in the United States, where some “baby boomers” are now in their sixties).

Humans have sought to restore function to the human body stricken by trauma or disease for thousands of years. For example, ancient civilizations such as the Phoenicians, Etruscans, Greeks, Romans, Chinese, and Aztecs used gold in dentistry as far back as 2700 BC. The use of sutures made from linen can be traced back to the Egyptians in circa 2000 BC. However, it has only been during the past 100 years that man-made materials and devices have been developed to the point where they can be used extensively to replace parts of living systems in the human body. These special materials—able to function in intimate contact with living tissue, with minimal adverse reaction or rejection by the body—are called biomaterials. Today, biomaterials play a major role in replacing or improving the function of every major body system (skeletal, circulatory, nervous, etc.). Some common implants include the orthopedic devices mentioned earlier; cardiac implants such as artificial heart valves and pacemakers; soft tissue implants such as breast implants and injectable collagen for soft tissue augmentation; and dental implants to replace teeth/root systems and bony tissue in the oral cavity.

Recognizing the growing importance of biomaterials and bioengineering, ASM International has published a number of reviews during the past 20 years that document the properties and failure mechanisms of metallic implant materials. The majority of these reviews can be found in various volumes of the Metals/ASM Handbook series. Until now, however, there was no single definitive source published by ASM that described the many important topics associated with the use of various implant materials (including metals, ceramics, polymers, composites, and coatings). These materials include:

- Implant material selection and applications
- The body/oral environment and its impact on implant material performance
- The basic concepts of biocompatibility
- Tissue attachment mechanisms
- Biophysical and biomechanical requirements of implant materials
- Corrosion and wear behavior, including degradation of polymeric materials
Coatings technology, including the use of coatings to facilitate implant fixation and bone ingrowth, wear-resistant coatings, coatings to enhance blood clot resistance, antimicrobial action, and lubricity, and coatings for delivery of drugs.

Design considerations, particularly failures related to inadequate design.

Each of these subjects is addressed in the *Handbook of Materials for Medical Devices*.

The genesis of this handbook can be attributed to the input of the ASM Handbook and Technical Books Committees, the ASM editorial staff (most notably, Scott Henry and Don Baxter), and the ASM Materials and Processes for Medical Devices Task Force. In particular, thanks are due to the following Task Force members for their thorough critique of the outline of the handbook at the outset of the project: Farrokh Farzin-Nia (Ormco Corporation), Darel E. Hodgson (Shape Memory Applications, Johnson Mathey), Terry C. Lowe (Los Alamos National Laboratory), and Sanjay Shrivastava (Edwards Lifesciences LLC). Their combined efforts led to the successful completion of this handbook.

Joseph R. Davis
Davis & Associates
Chagrin Falls, Ohio