POWDER METALLURGY
STAINLESS STEELS

Processing, Microstructures, and Properties

ERHARD KLAR
PRASAN K. SAMAL
Contents

Preface .. vii
Acknowledgments ix
About the Editors xi

Chapter 1 Introduction 1
 1.1 Historical Background 1
 1.2 Present State and Scope 3

Chapter 2 Metallurgy and Alloy Compositions 5
 2.1 Introduction 5
 2.2 Identification and Specifications 6
 2.3 Basic Metallurgical Principles 7
 2.4 Characteristics and Chemical Compositions of Wrought and
 PM Stainless Steels 11
 2.4.1 Ferritic Grades 12
 2.4.2 Austenitic Grades 14
 2.4.3 Martensitic Grades 18
 2.4.4 Duplex and Precipitation-Hardening Grades 19
 2.5 MIM Grades 19

Chapter 3 Manufacture and Characteristics of Stainless Steel Powders 23
 3.1 Water Atomization of Stainless Steel Powders 24
 3.1.1 Brief Process Description 24
 3.1.2 Physical Powder Characteristics 25
 3.1.3 Chemical Powder Characteristics 27
 3.1.4 Raw Materials and Melting 30
 3.1.5 Atomization 30
 3.2 Gas Atomization of Stainless Steel Powders 32
 3.3 Drying, Screening, Annealing, and Lubricating 34
 3.4 Contamination, Copper Sulfate and Ferroxyl Tests 35

Chapter 4 Compacting and Shaping 39
 4.1 Rigid Die Compaction 39
 4.1.1 Basics of Powder Compaction and Tooling 39
 4.1.2 Compaction of Stainless Steel Powders 40
 4.1.3 Dimensional Change 47
4.2 Powder Injection Molding of Stainless Steel ... 50
 4.2.1 Powders for MIM ... 51
 4.2.2 Feedstock ... 51
 4.2.3 Tooling and Molding ... 52
 4.2.4 Debinding ... 52
 4.2.5 Sintering .. 53
 4.2.6 Process Criteria and Design Guidelines 54
4.3 Extrusion of PM Stainless Steels .. 55
4.4 Hot Isostatic Pressing of Stainless Steels ... 55

Chapter 5 Sintering and Corrosion Resistance .. 59
 5.1 Sintering Furnaces and Atmospheres ... 60
 5.2 Sintering of Stainless Steels ... 61
 5.2.1 Fundamental Relationships ... 61
 5.2.2 Effect of Sintered Density on Corrosion Resistance 62
 5.2.3 Sintering of Stainless Steels in Hydrogen 69
 5.2.4 Sintering of Stainless Steels in Hydrogen-Nitrogen Gas Mixtures ... 84
 5.2.5 Sintering of Stainless Steels in Vacuum 91
 5.3 Liquid-Phase Sintering of Stainless Steels ... 93

Chapter 6 Alloying Elements, Optimal Sintering, and Surface Modification in PM Stainless Steels ... 101
 6.1 Alloying Elements .. 101
 6.2 Optimal Sintering ... 103
 6.3 Surface-Modified Stainless Steels .. 105

Chapter 7 Mechanical Properties .. 109
 7.1 Strengthening Mechanisms in Stainless Steels 109
 7.2 Factors Affecting Mechanical Properties of PM Stainless Steels 111
 7.2.1 Porosity ... 111
 7.2.2 Sintering Atmosphere and Interstitial Content 113
 7.2.3 Sintering Temperature and Time ... 115
 7.2.4 Thermal History and Cold Work ... 116
 7.3 Mechanical Property Standards .. 117
 7.4 Room-Temperature Mechanical Properties .. 117
 7.4.1 Static Mechanical Properties ... 117
 7.4.2 Fatigue Properties .. 118
 7.5 Elevated-Temperature Mechanical Properties 123
 7.5.1 Static Mechanical Properties ... 123
 7.5.2 Creep and Stress-Rupture Properties 124
 7.6 Mechanical Properties of Metal Injection Molded Stainless Steels 127

Chapter 8 Magnetic and Physical Properties .. 131
 8.1 Fundamental Relationships .. 131
 8.2 Powder Metallurgy Magnetic Materials .. 134
 8.2.1 Effect of Density and Morphology ... 135
 8.2.2 Applications of PM Soft Magnetic Materials 136
 8.2.3 Powder Metallurgy Stainless Steels 136
8.3 Physical Properties ... 142
 8.3.1 Physical Properties of Wrought Stainless Steels 142
 8.3.2 Physical Properties of PM Stainless Steels 143

Chapter 9 Corrosion Testing and Performance 147
 9.1 Corrosion-Resistance Testing and Evaluation 147
 9.1.1 Immersion Testing ... 149
 9.1.2 Salt Spray Tests .. 151
 9.1.3 Electrochemical Tests 153
 9.1.4 Ferric Chloride and Ferroxyl Tests 158
 9.1.5 Elevated-Temperature Oxidation Resistance 160
 9.2 Corrosion Data of Sintered Stainless Steels 161

Chapter 10 Secondary Operations ... 167
 10.1 Machining .. 167
 10.1.1 Machinability of Wrought and PM Stainless Steels 167
 10.1.2 Factors Affecting Machinability of PM Stainless Steels 169
 10.2 Welding .. 173
 10.2.1 Basics of Welding Stainless Steel 174
 10.2.2 Welding Methods Used with PM Stainless Steels 176
 10.2.3 Additional Considerations for PM Stainless Steels 177
 10.3 Brazing .. 178
 10.3.1 Basic Considerations in the Brazing of PM Stainless Steels 178
 10.4 Sinter Bonding .. 179
 10.5 Resin Impregnation .. 179
 10.5.1 Methods of Impregnation 179
 10.5.2 Benefits of Resin Impregnation 180
 10.6 Re-Pressing and Sizing .. 181
 10.7 Other Surface Treatments ... 181

Chapter 11 Applications .. 185
 11.1 Major Automotive Applications 186
 11.1.1 Rearview Mirror Bracket 186
 11.1.2 Antilock Brake System (ABS) Sensor Rings 186
 11.1.3 Automotive Exhaust Systems 187
 11.2 Stainless Steel Filters and Other Porous Stainless Steels 190
 11.3 Metal Injection Molding .. 195
 11.4 Stainless Steel Award-Winning Parts 196
 11.5 Stainless Steel Flake Pigments 199

Atlas of Microstructures .. 203
 Powder Morphologies ... 203
 Effect of Compaction Pressure on Porosity 205
 Austenitic Stainless Steels ... 206
 Ferritic Stainless Steels .. 208
 Oxides in Sintered Stainless Steel 210
 Carbides in Sintered Stainless Steel 212
 Nitrides in Sintered Stainless Steel 213
The treatment of sintered stainless steels in this book addresses the need to more clearly understand the many factors that affect the corrosion resistance of powder metallurgy (PM) stainless steels. For over a half-century, PM technology has been an effective method of net shape processing to produce structural parts for the automotive and other industries. Conflicting literature on the factors that influence the corrosion resistance of PM stainless steels has led to some widespread misconceptions, which generally attribute poor corrosion resistance to just the presence of pores (whereby the presence of pores increases the effective surface area of a sintered part and thereby increases the corrosion rate in the passive region). A crevice-sensitive density region does exist in which a neutral chloride environment can give rise to crevice corrosion. Nonetheless, many or most cases of underperformance cited can be traced to inappropriate sintering practices that result in poor metallurgical soundness.

Recent progress in the understanding of corrosion and corrosion-resistance properties of sintered stainless steels has led to renewed interest in their application in the automotive sector for the benefit of net-shape processing and more efficient materials utilization. To obtain good corrosion-resistance properties, sintered stainless steels require careful processing, starting with powder selection, avoidance of contamination, efficient delubrication, and through to controlled sintering and cooling. There are several distinct, process-related corrosion issues with sintered stainless steels that the PM industry had to cope with over the years:

- Contamination with less noble constituents, causing galvanic corrosion
- Crevice-corrosion-prone density range in neutral saline environments
- Excessive carbon content (from various sources), causing sensitization and intergranular corrosion
- Excessive nitrogen content, due to sintering in H₂–N₂ mixtures containing large amounts of nitrogen (i.e., dissociated ammonia), in combination with slow cooling rates produces sensitization and intergranular corrosion
- Inadequate cooling after sintering, which, in the presence of excessive carbon, can cause sensitization and intergranular corrosion
- Excessive dewpoints and/or inadequate cooling causes reoxidation during cooling and susceptibility to pitting
- Surface chromium losses due to sintering in a vacuum furnace can impair the corrosion resistance of sintered stainless steels
- Pitting corrosion due to incomplete reduction of original residual oxides.

Solutions to all of these problems are at various stages of implementation in the industry. Because of this, and the fact that corrosion resistance is usually the prime property when stainless steel is selected as a material, the subject of PM stainless steel processing, and, more specifically, of optimal processing, from powder to final part pervades the entire book.

For stainless steel parts manufacturers, this book serves as a guide to making parts that possess improved corrosion-resistance properties, thereby opening new market opportunities. Although...
some of the aforementioned problems can also be present in wrought and cast stainless steels, some are specific to PM, and all have special PM processing-related characteristics. The general approach is first to present the phenomenological aspects of a subject, including problem areas. This is followed by a description of its underlying principles and then a discussion and illustration of available solutions. The perspectives taken are often those of a powder producer, reflecting the authors’ affiliation. Significant portions of the data are from Professor Maahn and coworkers of the Technical University of Denmark, who, in a three-year effort (1990 to 1993) in cooperation with industry, made important contributions to this subject.

The structure of the book more or less follows the sequence of the production process. After a brief historical background, the chapters include metallurgical background and alloy compositions, powder manufacture and properties of powders, compaction and shaping, sintering and corrosion, optimal sintering and surface modification, with concluding chapters on mechanical and magnetic properties, corrosion-resistance testing and properties, secondary operations, and applications. Emphasis is concentrated on the press-and-sinter technology of PM, although some consideration is given to metal injection molding, powder extrusion, and hot isostatic pressing. The discussion of optimal sintering in Chapter 6, “Alloying Elements, Optimal Sintering, and Surface Modification in PM Stainless Steels,” although based largely on press-and-sinter technology, is relevant, with appropriate restrictions, to other modes of PM shaping and consolidating.

Introductory books on PM and corrosion science provide a useful basis for this text, because the reader is assumed to possess a basic knowledge of metallurgy, powder metallurgy, and corrosion science. Suggested references are Powder Metallurgy Science by R.M. German (Ref 1); Powder Metal Technologies and Applications, Volume 7, ASM Handbook, 1998 (Ref 2); Corrosion Engineering by M.G. Fontana (Ref 3); Corrosion and Corrosion Control by H.H. Uhlig and R.W. Revie (Ref 4); and Corrosion: Fundamentals, Testing, and Protection, Volume 13A, ASM Handbook, 2003 (Ref 5). Standards on metal corrosion are found in Volume 3.02 of the Annual Book of ASTM Standards. Nevertheless, the authors have attempted to keep the text simple and to facilitate understanding through the use of numerous pictures, illustrations, and references. A brief glossary of definitions of powder metallurgy and corrosion terms is shown in an Appendix, with more complete versions available in ASTM standard B-243 (Ref 6) and in the aforementioned ASM Handbook on corrosion.

In this context, it is hoped that this work provides a contribution to the more effective processing of sintered stainless steels to achieve improved corrosion resistance and successful applications in more demanding environments. Evidence for this is presented, and the authors believe that it will be only a matter of time until the versatility of the PM process closes any gaps that still exist with wrought or cast forms. As the industry implements the solutions to the previously mentioned problems, knowledge from wrought and cast stainless steel technology can be used and applied more effectively to PM stainless steels. This then should develop into a more comprehensive use and representation of PM stainless steels within the overall field of metals technology.

Erhard Klar
Prasan K. Samal

References
1. R.M. German, Powder Metallurgy Science, Metal Powder Industries Federation, 1994
Acknowledgments

Some of the work reported in this book was performed in the research laboratories of SCM Metal Products/OMG Americas (currently North American Hoganas) during the authors’ affiliation with those companies. We would like to thank all those involved in this work as well as for general support and permission to publish the data. We also are grateful to Professor Randall M. German, Dr. Chaman Lall, and Professor Alan Lawley for reviewing the manuscript and providing valuable suggestions to improve the book. The support and the encouragement of the Publications Managers of ASM International, namely Scott Henry and Steven Lampman, are greatly appreciated. We also thank a number of our friends in the PM industry who have provided assistance in the forms of technical information and review of selected chapters of the manuscript. They include James P. Adams, Professor Paul Beiss, David F. Berry, Peter dePoutiloff, Dr. Olle Grinder, Jack A. Hamill, Jr., Dr. Kishor M. Kulkarni, Suresh O. Shah, Howard I. Sanderow, and Maryann Wright. The authors express their gratitude to Metal Powder Industries Federation (MPIF) for permission to use various copyrighted figures and data. The authors would also like to acknowledge the significant efforts and contributions of our present and former colleagues. Most prominent among them are Harry Ambs, Ingrid Hauer, J. Patrick Hughes, Richard Ijeoma, Owe Mars, Samir Nasser, George Novak, Mary Pao, David Ro, Ronald Solomon, Mark Svilar, and Joseph Terrell.
Erhard Klar studied at the University of Tuebingen and the Technical University of Berlin where he received his Ph.D. in physical chemistry. This was followed by postdoctoral studies at the University of Pittsburgh. Dr. Klar’s work on the powder metallurgy of stainless steels and other materials was conducted at the Metals Group of SCM Corporation, where he was the Director of Research. Dr. Klar is now retired.

Prasan K. Samal received his B. Tech. in Metallurgy from the Indian Institute of Technology-Madras, and his M.S. and Ph.D. in Materials Engineering from the University of Maryland-College Park and Case Western Reserve University, respectively. He started his career with Kennecott Copper Corporation, then joined the Metals Group of SCM Corporation, which later became a part of OMG Americas, and subsequently acquired by North American Hoganas. Dr. Samal holds ten U.S. patents and has published more than forty technical papers.