Fatigue and Durability of Metals at High Temperatures

S.S. Manson
G.R. Halford
We dedicate this book to our beloved grandchildren

Shira Lisa Entis
Jonathan Joshua Entis
Chloe Teressa Green
Alexandra Eugena Green
Jennifer Lisa Ames
Jeffrey Manson Ames
Erin Lea Stone
Jeremy Francis Stone
Paul Isaac Manson
Cecily Rose Manson
Joshua Simon Ames

Brian Patrick Packert
Brendan James Packert
Colin Richard Packert
Drew Joseph Halford
Grace Charlotte Halford
Rose Elise Halford
Contents

Preface by S. S. Manson ... vi
Preface to First Volume by S. S. Manson vii
Preface to First Volume by G. R. Halford viii
About the Authors .. ix

Chapter 1 Creep Under Monotonic and Cyclic Loading 1
Chapter 2 Creep Rupture ... 21
Chapter 3 Strain-Range Partitioning—Concepts and Analytical Methods .. 43
Chapter 4 Strain-Range Conversion—An Extended View of Strain-Range Partitioning ... 69
Chapter 5 Partitioning of Hysteresis Loops and Life Relations 83
Chapter 6 Total Strain-Based Strain-Range Partitioning—Isothermal and Thermomechanical Fatigue ... 111
Chapter 7 Treatment of Multiaxial Loading 155
Chapter 8 Critique of Predictive Methods for Treatment of Time-Dependent Metal Fatigue at High Temperatures 173
Chapter 9 Obstacles to High-Temperature Structural Durability of Continuous-Fiber Metal-Matrix Composites 223
Chapter 10 Aerospace Applications—Example Fatigue Problems 231
Index ... 259
Preface by S.S. Manson

When Dr. Halford and I undertook to write this book, more than two decades ago, we intended that it be all-inclusive, covering our experience in the subject of fatigue and durability. We intended that it all be in one volume. As we prepared it during the ensuing years, it became clear that the subject was too broad to be contained in one volume, especially if we were to include the relevant work of our colleagues in other institutions, even in other countries. We decided that at least two volumes would be needed, with this second volume to be dedicated to high-temperature aspects, which are gaining more and more attention with the technology expanding in that direction.

This second volume gave Dr. Halford the opportunity to address in greater depth two subjects that were of intense interest to him: treatment of strain-range partitioning using the total strain-range approach (so that the application could be extended to cases involving small strains), and devoting more discussion to applications of our new technology to practical problems on which he was daily assisting industry. We intended each of these subjects to cover long chapters. He did write most of these two chapters, but his untimely passing prevented him from completing them. On Oct. 25, 2006, he passed away. I have not altered the chapters; therefore, the volume is left diminished by the sad turn of events. The entire field covered by his work is left deprived by his passing. And, I have been deprived of a colleague, and a dear friend.

The passing of Dr. Halford before the book was completed necessitated many changes in the final processing. His numerous colleagues and my former students kindly volunteered to be as helpful as they could to complete the final editing. I wish to extend my sincere gratitude to the following for their gracious contributions throughout the writing of this book and especially in the final editing:

Dr. Sissay Hailu
Dr. Michael Mitchell
Dr. Ramesh Kalluri
Dr. Robert Bill
Kejin Jung
Marvin Hirschberg (Dec)
And, of course, the ASM technical editor Steven Lampman

S.S. Manson
Feb. 5, 2009
Preface to the First Volume
by S.S. Manson

The past half century has witnessed a virtual revolution in the development of two fields which are the subject of this book: the introduction of advanced materials as structural components in severely loaded machines exposed to high temperatures and temperature gradients, and the development of technology of life computation for such components, of which one of the major failure mechanisms is fatigue. This book is based on the experience of the authors during this period. Although it emphasizes our research both as individuals and as colleagues for half a century, it also includes the work of numerous others who have provided useful results that have moved progress in these fields.

My first report on fatigue appeared in 1953. An intense interest and activity in this rapidly changing field has continued since. Collaboration with Dr. Gary Halford started in 1966 when he joined NASA at its Cleveland center where I served as Chief of the Materials and Structures Division. This cooperation continued after I retired in 1974 to join the faculty of Case Western Reserve University, and even after I retired from CWRU two decades later. We started to write this book well before I left CWRU. Thus, this book has been in the making for a long time, perhaps longer than we care to admit. But to compensate for the slowness of its progress toward publication, it is fair to say that we have been continuously adding content from our own research, and from that developed elsewhere, as warranted.

Initially this book was prepared as a text on fatigue, and its content fashioned after my regular curriculum presentations at Case Western Reserve University, short course presentations at the Pennsylvania State University, and shorter presentations at MIT, The Technion in Israel, and numerous other universities. In later-year presentations it was broadened under the title Relation of Materials to Design to include content developed at NASA. Its current context is still largely related to fatigue but includes other subjects representative of the material presented in these courses.

I am grateful to NASA for the support it has rendered me during my employment there, and later in grants provided to continue my activities initiated there. I am also grateful to the Oak Ridge National Laboratory, the Electric Power Research Institute, and the Metals Properties Council for their grants to conduct the research described in this book. My most heartfelt gratitude is expressed toward my co-author, Gary R. Halford. It has been a genuine joy to work with him as a colleague, friend, and co-author.

As always, I express my deep appreciation to the Almighty for the gift of life and long-time participation in the developments contained in this book.

S.S. Manson
December 2005
Preface to the First Volume
by G.R. Halford

This book and a planned second volume dealing with high-temperature durability represent the culmination of many years of collaborative research with my highly respected colleague, S.S. Manson. Few researchers have had the luxury of being able to work together continuously for as long as we have. And few colleagues have been able to work together as amicably as we have. We were fortunate to be involved in numerous advancements to the field through individual and joint publications spread over five decades. Our combined years of experience exceed a century. This book provides a repository of the most significant of our contributions to the art and science of material and structural durability. Valuable contributions from other researchers are also included as appropriate.

I cannot sufficiently thank NASA for the rare opportunity provided me to have been allowed to work in this field for the duration of my employment. A prime advantage provided by a large government research organization was that we had valuable technical contacts with not only the aerospace industry, but also with many other industries, including electric power generation, off-highway and automotive manufacturing, metals producers, chemical and petroleum producers, and numerous other industries that faced serious material and structural durability issues. We were thus privileged to have exposure to countless durability issues of a diverse nature. From such a vantage point, it was possible to develop generic models having a broad range of applicability.

I would also like to thank the University of Illinois in Urbana-Champaign, its Department of Theoretical and Applied Mechanics, and in particular, Professor JoDean Morrow. I could never have been in a position to participate in this work without their providing me with the appropriate educational background. Finally, my late parents, Herbert C. and Faye S. Halford, brother Donald W. Halford, my wife, Pat M. Halford and our children, Kirk, Gwen, and Shawn must be acknowledged for instilling me with balanced senses of patience, work ethic, responsibility, dedication, and respect—all interspersed with a tinge of humor.

Gary R. Halford
December 2005
About the Authors

S.S. Manson is Professor Emeritus, Case Western Reserve University. Professor Manson joined the National Advisory Committee for Aeronautics (the precursor to NASA) at Langley, VA in 1941 and transferred to Cleveland in 1943. There, he performed cutting-edge theoretical and experimental stress analysis and durability research associated with the materials used in piston engines and the newly evolving gas turbine engines. His research interests drew him into the entirely new area of low-cycle fatigue, particularly thermal fatigue. The basic law of low-cycle fatigue that he developed remains in use 50 years later, i.e., the Manson-Coffin law. His research expanded into the study of creep, creep-rupture and time-temperature parameters, for which he created several of great practical value. He has received numerous awards for his work, including the Gold Medal from the Franklin Institute for development of the Manson-Coffin law of low-cycle fatigue, the NASA Exceptional Scientific Achievement Award, and the Nadai Award bestowed by the American Society of Mechanical Engineers. His book Thermal Stress and Low-Cycle Fatigue was published in 1966. He remained at NASA until 1974, serving most of the time as Chief of the Materials and Structures Division. At that time, he moved on to become Professor of Mechanical and Aerospace Engineering at Case Western Reserve University. There he continued to teach on the subject of the mechanical behavior of materials and perform research together with his students and colleagues to develop better durability lifting models. He currently lives in California.

G.R. Halford was a Distinguished Research Associate, NASA Glenn Research Center, Cleveland, Ohio. Following his education in the Department of Theoretical and Applied Mechanics at the University of Illinois under the guidance of Professor JoDean Morrow, he joined the NASA Center in 1966. Dr. Halford, in conjunction with Professor S.S. Manson, was actively involved in research and development of advanced life prediction methods for low- and high-temperature fatigue analysis of high-performance mechanical systems. Most notable is the total strain version of the method of strain-range partitioning (SRP). That methodology sees use in several industries. Dr. Halford was involved with durability issues in virtually every
propulsion system of interest to NASA. In the aeronautics arena, he dealt with sub-sonic, supersonic, and hypersonic propulsion systems. In space propulsion and power, he dealt with ion engines, solid propellant rockets, liquid rockets of all sizes and description, as well as solar and nuclear energy conversion and storage systems. The severe durability limitations of these systems spawned much of his research into advanced life prediction methods that are the subject of this book. Dr. Halford authored or co-authored over 200 technical papers, coordinated over 60 grant/contractor reports, edited several technical conference volumes, and delivered over 70 invited technical lectures.