Failure Analysis of Heat Treated Steel Components

L.C.F. Canale
R.A. Mesquita
G.E. Totten

ASM International®
Materials Park, Ohio 44073-0002
www.asminternational.org
This book is dedicated to our families, without whose continued support the completion of this work would not have been possible:

My husband, Antonio Carlos Canale,
and my children, Amanda, Sara, and Bruno

L.C.F.C.

To my lovely wife, Carla Mesquita, and my dear son, Rafael

R.A.M.

My wife, Alice

G.E.T.
Contents

Preface ... ix

Component Design ... 1

Mario Solari, Consultores de Tecnología e Ingeniería SRL
Pablo Bilmes, Universidad Nacional de La Plata
Introduction to Heat Treat Processing ... 1
Important Design Aspects ... 2
Techniques for Controlling Distortion .. 16
Examples of Failures due to Heat Treatment ... 18
Heat Treatment Design .. 29
Modeling of Heat Treatment ... 31
Failure Aspects of Welded Components .. 33
Heat Treatment Procedures Applied to Welded Components .. 36
The Risk-Based Approach and Heat Treatments ... 40

Overview of the Mechanisms of Failure in Heat Treated Steel Components 43

General Sources of Failure .. 43
General Practice Conducting a Failure Analysis ... 47
Determination of the Fracture Mechanism .. 51
Summary ... 83

Mechanisms and Causes of Failures in Heat Treated Steel Parts ... 87

Debbie Aliya, Aliya Analytical, Inc.
Types of Damage and Failure ... 88
Factors Contributing to Poor Response from Heat Treatment .. 101
Concluding Comments ... 108

General Aspects of Failure Analysis .. 111

Waldek Wladimir Bose-Filho, Universidade de São Paulo
José Ricardo Tarpani, Universidade de São Paulo
Marcelo Tadeu Milan, Instituto de Materiais Tecnológicos do Brasil Ltda.
General Guidelines of Failure Analysis ... 111
Fracture ... 118
Distortion ... 127
Wear-Assisted Failure ... 129
Environmentally Assisted Failure ... 131
Failure in Steel Forging

Md. Maniruzzaman, Worcester Polytechnic Institute
Charlie Gure, Forging Consultant
Stephen R. Crosby, The Stanely Works
Richard D. Sisson, Jr., Worcester Polytechnic Institute

Forging Process Design .. 134
Case Studies .. 138

Failures from the Casting Process

Omar Maluf, Instituto de Materiais Tecnologicos do Brasil Ltda.
Luciana Sgarbi Rossino, Instituto de Materiais Tecnologicos do Brasil Ltda.
Camilo Bento Carletti, Centro de Caracterizacao e Desenvolvimento de Materiais
Celso Roberto Ribeiro, Centro de Caracterizacao e Desenvolvimento de Materiais
Clever Ricardo Chinaglia, Centro de Caracterizacao e Desenvolvimento de Materiais
Jose Eduardo Mya, Centro de Caracterizacao e Desenvolvimento de Materiais

Failures due to Improper Cast Design 151
Effects due to Porosity .. 154
Effects due to Decarburization during Microfusion 162
Effects due to Cold Joints .. 163
Inclusions .. 165

Sources of Failures in Carburized and Carbonitrided Components

Małgorzata Przylecka, Poznań University of Technology
Wojciech Gęstwa, Poznań University of Technology
L.C.F. Canale, Universidade de São Paulo
Xin Yao, Portland State University
G.E. Totten, Associação Instituto Internacional de Ciência and Portland State University

Design .. 179
Steel Selection and Hardenability .. 181
Residual Stress ... 196
Dimensional Stability .. 200
Quenching and Grinding Cracks .. 204
Insufficient Case Hardness and Improper Core Hardness 209
Influence of Surface Carbon Content 211
Influence of Grain Size .. 217
Internal Oxidation .. 219
Carbides and Carbidic Structure ... 222
Noncarbide Inclusions .. 228
Micropitting .. 230
Contact Fatigue Pitting (Macropitting) 230
Case Crushing .. 230
Pitting Corrosion ... 232
Partial Melting ... 233

Fatigue Fracture of Nitrided Layers

Aleksander Nakonieczny, Institute of Precision Mechanics

Fatigue Resistance .. 241
Fatigue Evaluation of Nitrided Steels 244
Fatigue Property Characteristics after Carbonitriding 246
Summary .. 250
Steel Heat Treatment Failures due to Quenching ... 255

L.C.F. Canale, Universidade de São Paulo
G.E. Totten, Associação Instituto Internacional de Ciência and Portland State University

Phase Transformation During Heating and Quenching ... 255
Effect of Materials and Quench Process Design on Distortion 263
Stress Raisers and Their Role in Quench Cracking .. 272
Case Studies in Quench Cracking .. 273

Steel Failures due to Tempering and Isothermal Heat Treatment 285

Jan Vatavuk, Universidade Mackenzie
L.C.F. Canale, Universidade de São Paulo

Martensite ... 285
Tempering ... 289
Embrittlement ... 293
Case Studies ... 303

Failure Analysis in Tool Steels ... 311

Rafael A. Mesquita, Villares Metals
Celso Antonio Barbosa, Villares Metals

Classification of Tool Steels ... 311
Heat Treating Failures of Cold Work Tools ... 314
Heat Treating Failures of Hot Work Tools ... 330
Conclusion ... 349

Case Studies of Steel Component Failures in Aerospace Applications 351

Failure Analysis of a Catapult Holdback Bar ... 351
Cracking in a Main Landing Gear Attach Pin ... 354
MLG Linear Actuating Rod and Cylinder ... 355
Failure Analysis of AISI 420 Stainless Steel Roll Pin ... 359
Failure Analysis of a Main Landing Gear Lever ... 362
Failure Analysis of an Inboard Flap Hinge Bolt ... 364
Failure Analysis of a Nose Landing Gear Piston Axle ... 367
Multiple-Leg Aircraft-Handling Sling .. 372
Failure Analysis of an Aircraft Hoist Piston Axle during Static Test 373
Failure Analysis of an Internal Spur Gear .. 375
Main Landing Gear Axle .. 378
Nondestructive Testing and Failure Analysis of Fin Attach Bolts after Full-Scale Fatigue Testing ... 380

Failure Analysis of Powder Metal Steel Components ... 395

S. Ashok, Sundram Fasteners Ltd.
Sundar Sriram, Sundram Fasteners Ltd.

Powder Metallurgy Process ... 395
Case Hardening .. 397
Failure Analysis Techniques ... 399
Case Studies of PM Steel Failures ... 401

Induction Hardening ... 417

Janez Grum, University of Ljubljana

Steels for Surface Hardening .. 419
Main Features of Induction Heating	...	420
Induction Hardening of Machine Parts	...	422
Magnetic Flux Concentrators	...	437
Conditions in Induction Heating and Quenching of Machine Parts	...	440
Time-Temperature Dependence in Induction Heating	...	444
Quenching Systems for Induction Hardening	...	449
Time Variation of Stresses and Residual Stresses	...	452
Workpiece Distortion in Induction Surface Hardening	...	466
Residual Stresses after Induction Surface Hardening and Finish Grinding	...	472
Hardness Profiles in the Induction Surface-Hardened Layer	...	477
Fatigue Strength of Materials	...	481
Stress Profiles in Machine Parts in the Loaded State	...	485
Input and Output Control of Steel for Induction Surface Hardening of Gears	...	491

Failure Analysis of Steel Welds ... 503
J.H. Devletian, Portland State University
D. Van Dyke, MEI-Charlton, Inc.

Discontinuities in Steel Welds ... 503
Fatigue of Welded Joints ... 505
Hydrogen-Assisted Cracking Theory ... 506
Types of Hydrogen-Assisted Cracking ... 509
Stress-Corrosion Cracking of Steel ... 513
Solidification Cracking of Steel ... 515

Appendix 1: Metric Conversion Guide ... 521
Appendix 2: Temperature Conversion Table ... 525
Appendix 3: Steel Hardness Conversions ... 529
Appendix 4: Austenitizing Temperatures for Steels ... 537
Appendix 5: Tempering Colors for Steels ... 539
Appendix 6: Physical Properties of Carbon and Low-Alloy Steels ... 541
Appendix 7: AISI to Non-AISI Steel Cross Reference ... 551
Appendix 8: Non-AISI to AISI Steel Cross Reference ... 563
Appendix 9: Iron-Carbon Equilibrium Diagram ... 585
Appendix 10: Isothermal Diagrams of Selected Steels ... 587
Appendix 11: Continuous Cooling Diagrams of Selected Steels ... 601

Index ... 629
Material failures can lead to many potentially disastrous consequences, including poor product quality, necessary repair or component or equipment replacement, production downtime losses, environmental impact, and even loss of life. Furthermore, failures may arise from not one but various causes, including design, material composition, and, in the case of metals such as steel, improper thermal processing. Therefore, when failures do occur, it is critically necessary to not only identify these failures but also to determine and correct their root cause. This is a primary objective of this work.

There are many books, journals, and other references that focus on various aspects of failure analysis. However, there are relatively few that focus on steel failures arising during thermal processing, such as forging, casting, heat treatment, welding, and others. A second objective of this book is to provide a reasonably thorough reference detailing potential failures that may occur during thermal processing and the identification of their root cause, even if it is not specifically the thermal process being considered.

An important feature of *Failure Analysis of Heat Treated Steel Components* is that it not only discusses various causes of a failure and its identification but also integrates this discussion with the metallurgy of the process, thus providing one comprehensive resource. This book was developed as a reference source for use by designers, practicing metallurgists, mechanical and materials engineers, quality-control technicians, and heat treaters. This book also will serve as an important textbook for various advanced undergraduate and graduate courses on either failure analysis or thermal processing of steel.

The editors are indebted to the invaluable guidance of many persons in the development and production of this text, including Prof. George Krauss (Colorado School of Mines), George Vander Voort (Buehler Ltd., USA), N. Gopinath and V. Raghunathan (Fluidtherm Technology P. Ltd.), Ross Blackwood (deceased), Larry Jarvis (Tenaxol Inc.), and many others. In addition, the editors are most appreciative of Steve Lampman for his continued patience, guidance, and assistance during the various stages of the preparation of this text. The editors are especially grateful for the support of the chapter authors for the diligence, dedication, and patience involved in their vital contributions to this work. Most of all, the editors are especially appreciative of the support and sacrifices made by their spouses, Antonio Canale, Carla Mesquita, and Alice Totten, without which the preparation of this book would not have been possible. We also express our gratitude to Villares Metals S.A. for their continued and vital assistance and generosity throughout this project.

Lauralice C.F. Canale, Ph.D.
Sao Carlos, SP, Brazil

Rafael Agnelli Mesquita
Sumare, SP, Brazil

George E. Totten, Ph.D., FASM
Seattle, WA, USA