Thermal Spray Coatings in Process/Metals Industries

JTST Highlights
Society News
Perfection in surface treatment technology.
Now in USA.

UNITEDCOATINGS GROUP is a group of companies in Italy and USA offering all services that enable our customers to implement technologies in their process on a global basis. Starting from coating service, shop in shop and shop at the door concepts, from equipment supply up to Technology Transfer in the field of thermal spray and diffusion coatings.

TURBOCAATING Italy and now Hickory (NC) USA is a leading one-stop production shop for post-machining services; partner of major OEMs worldwide for industrial gas turbine engines. The TURBOCAATING service includes LPPS, APS and HVOF technologies for TBC coatings and hard facing, CVD/PACK technology for Aluminizing, vacuum brazing and welding, LASER drilling and other technologies. Especially the unique LASER drilling services on highest quality level gives TURBOCAATING the possibility to stay ahead in complete service for their customers. A full range of services under one roof delivering your product tested and ready to engine.

ARTEC supplies complete coating solutions (Flame, APS, LPPS/VPS, and HVOF) with guarantee on quality and productivity at the start of production. ARTEC was selected from TURBOCAATING as first choice to set up the complete coating plant including APS, HVOF and LPPS in the United States. The solutions include development of processes in house and transfer, supply of turn-key equipment and services, training and qualification of personnel and qualification of the components. Feel free to have a look and meet us in Hickory (NC).
6 Advancements in High-Velocity Thermal Spray Gun Design

8 Application Note: Functional Coatings from the Plasma Nozzle

10 Controlling Maintenance Costs in the Petrochemical Industry Using Thermal Spray

Departments

2 Editorial
3 ASM Thermal Spray Society News
14 JTST Highlights

About the cover

Editorial Opportunities for iTSSe in 2012
The editorial focus for iTSSe in 2012 reflects established applications of thermal spray technology such as power generation and transportation, as well as new applications representing new opportunities for coatings and surface engineering.

November Emerging Technologies
To contribute an article to one of these issues, please contact the editors c/o Julie Kalista at Julie.Kalista@asminternational.org.
To advertise, please contact Kelly Thomas, Kelly.Thomas@asminternational.org.

The acceptance and publication of manuscripts in International Thermal Spray & Surface Engineering does not imply that the editors or ASM International accept, approve, or endorse the data, opinions, and conclusions of the authors. Although manuscripts published in International Thermal Spray & Surface Engineering are intended to have archival significance, author’s data and interpretations are frequently insufficient to be directly translatable to specific design, production, testing, or performance applications without independent examination and verification of their applicability and suitability by professionally qualified personnel.
The August issue focuses on thermal spray coatings and engineering surfaces in process and metals industries. These industries range from mining/extraction to refining and processing to coating production and applications. The coatings can be for corrosion control and thin film surfaces in high technology applications.

In corrosion control, corrosion affects a wide range of process industries including oil and gas, petrochemical, power generation, pulp and paper, and metal processing. Engineered surfaces provide a stable interface between the tool or component and the service environment. Thermal spray coatings are used to improve performance, reduce maintenance, and increase service life of a wide variety of processing equipment. Controlling maintenance costs by use of thermal spray in the petrochemical industry is discussed by ExxonMobil Chemical Co. in this edition.

Coating technology is also a key innovation driver for almost all areas of manufacturing, from scratch-proof displays for smart phones to antibacterial coatings on a variety of surfaces. Coatings protect components from corrosion and aging, from solar cell modules to car engine components, without the end user ever noticing their existence.

Continued advancements in process tools (e.g., thermal spray equipment), and processes enable further innovation in engineered surfaces. This ranges from plasma processes providing thin films to thicker films produced using laser-based additive techniques. These processes continue to provide coatings with improved performance, reduced process steps, and reduced costs.

Included in this issue are articles on the advancements in hardware and coatings by the Fraunhofer Institute in Germany and AMT AG in Switzerland. Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM) developed a new kind of plasma coating process providing an engineered surface. The key element to their process is a unique plasma device. In the nozzle, an electrical discharge generates small flashes with the plasma exiting from the nozzle in the form of a jet. The process is used in the automotive industry and the energy sector to provide protection against corrosion and aging.

AMT AG discusses progress in high velocity oxy-fuel (HVOF) gun design that enables multiple processes to be conducted with a single thermal spray gun platform. This reduces the number of processes (and guns) required to provide a multicoating system. The hybrid gun design enables development of duplex coatings, and is commercially manufactured for production operations.

You can learn about more advancements in thermal spray technology at ASM Thermal Spray Society’s International Thermal Spray Conference (ITSC). Be sure to join us May 13-15 for ITSC 2013: Innovative Coating Solutions for the Global Economy in Busan, Republic of Korea, to experience premier technical programming from the world’s leading thermal spray experts. The abstract submission deadline has passed but organizers are still considering late submissions. Email Natalie Nemec (natalie.nemec@asminternational.org) by August 13 for consideration.

Robert Gansert, Ph.D., iTSSe co-editor
Advanced Materials & Technology Services Inc.

2013 International Thermal Spray Conference and Exposition (ITSC):
Innovative Coating Solutions for the Global Economy
May 13-15, 2013
Busan Exhibition and Convention Center (BEXCO)
Busan, Republic of Korea

Join us for the world’s foremost international conference and exposition for thermal spray technologists, researchers, manufacturers, and suppliers. ITSC is the preeminent annual thermal spray event with an Asian rotation every three years. Benefit from dynamic educational programs and networking events.

Visit, www.asminternational.org/content/Events/itsc, to learn more.
ITSC 2012 is a huge success!

ITSC 2012: Air, Land, Water, and the Human Body: Thermal Spray Science and Applications, held May 21-24, in Houston, Tex., was a great success with more than 1100 attendees, 239 presentations, 83 exhibitors with 109 booths, and 39 countries represented. Two keynote presentations kicked off the event: Brian J. Fitzgerald (ExxonMobil Chemical Co.) presented Controlling Maintenance Costs by the Use of Thermal Spray in the Petrochemical Industry (pictured here); Mitchell Dorfman, FASM, Sulzer Metco Fellow, (Sulzer Metco US) presented Global Opportunities and Challenges in the Thermal Spray Industry.

Tucker wins TSS President’s Award for Meritorious Service

During the recent ITSC event in Houston, Dr. Robert C. Tucker, FASM, (left) received the TSS President’s Award for Meritorious Service from TSS president Charles M. Kay for his significant contributions to the revision of the Handbook of Thermal Spray Technology, which will be released in 2013.

Nominations sought for TSS Hall of Fame

The Thermal Spray Hall of Fame, established in 1993 by the Thermal Spray Society of ASM International, is a means of recognizing and honoring outstanding leaders who have made significant contributions to the science, technology, practice, education, management, and advancement of thermal spray. Nominations are now open until September 30, 2012 for the 2013 award. For a copy of the rules, nomination form, and list of previous recipients, visit, http://tss.asminternational.org/portal/site/tss/Networking/Awards/, or contact Sarina Pastoric at Sarina.pastoric@asminternational.org.

High production value... no clogging

Plasma Giken has developed new, no-clog cold spray technology for varied applications in chemical, aerospace, semi-conductor, energy, and medical industries. The Cold Spray PCS-1000 advancements make possible the application of even difficult metals such as Ni, Ti, Ti6Al4V, Inconel alloys, and stainless steel at thicknesses of more than 10mm, while maintaining nearly 100% deposition efficiency for maximum reliability and performance. Don’t believe it? Contact us for some samples, or visit our Open Laboratory and test it for yourself.
TSS Student Board Members acknowledged

TSS President Charles M. Kay (center) thanked TSS Student Board Members for their contributions while serving on the Board in 2012. Wilson Wong earned his Ph.D. in mining and materials engineering from McGill University (Montreal, Canada). Maya Shinozaki is a graduate student in materials science and metallurgy at the University of Cambridge, UK.

Symposium on thermal spray technology

The Cleveland Chapter sponsored a one day symposium on thermal spray in May, which included six presentations on various aspects of the technology including chromium plate replacement, gun design, cold spray processes, challenges of powder manufacturing, and the influence of spray parameters on coating porosity and properties. Dr. Mark Smith, FASM, ASM immediate past president, gave an overview talk on traditional and emerging thermal spray process technologies, potential advantages and limitations of thermal spray, and examples of how thermal spray has been used to solve challenging materials and design problems. Charles Kay, TSS president, gave an overview of the Thermal Spray Society, emphasizing the new spray operator certification program. Joe Stricker, St. Louis Metallizing, gave a similar presentation on the role of International Thermal Spray Association.

Other technical presenters included Mark Smith, Sandia National Labs; Daryl Cramer, Thermal Spray Technologies; J. Karthikeyan, ASB Industries; Jean Mozolic, Zatorski Coating.

Attendees at Cleveland Chapter’s symposium on thermal spray technology.

Bradley Lerch, FASM, gives a technical presentation at the symposium.

Make Connections at Cold Spray.

2012 North American Cold Spray Conference

October 30-November 1
Worcester Polytechnic Institute (WPI)
Worcester, Massachusetts USA

Join the global industry to hear invited cold spray experts sharing the latest in spray coating technology.
- Gain a deeper understanding of this coating technology
- Follow global R&D programs on cold spray
- Receive first-hand information for industrial applications
- Network with international experts
- Showcase and demonstrate your products and services
- Advance the industry; share your knowledge and experience

If you’re involved with the cold spray industry... this is YOUR event.

Organized by:
Sponsored by:
Official Media Sponsors:

Register today, visit www.asminternational.org/coldspray.
Co.; Gopal Dwivedi, Stony Brook University; and Bradley A. Lerch, FASM, NASA Glenn Research Center (pictured).

Additional information can be found at: http://www.asmcleveland.com/education/thermal-spray-education-symposium.

Certified Thermal Spray Operator (CTSO) update

The ASM Thermal Spray Society has been delivering certification exams since 2011. The Thermal Spray Certification Committee developed 11 exams including one general knowledge of thermal spray fundamentals, five written process exams, and five practical exams. The five process areas are air plasma, cold spray, flame spray, HVOF, and wire are spray. Each CTSO has taken at least three exams prior to earning the designation.

AeroMat 2013 Call for papers

In 2013, AeroMat promises to deliver a program built around the theme “Building on a Century of Innovation.” Organizers are seeking technical papers on all aspects of materials, processes, and applications for the aerospace industry. Part of the technical program will spotlight design and manufacturing processes of advanced materials for the future. The call for papers is now open. Share your ideas, research, and outcomes to advance the industry. Abstract submission deadline is November 1, 2012. Visit, https://asm.confex.com/asm/aero13/cfp.cgi, to submit your abstract today.

STICK WITH THE BEST
DeWAL Thermal Spray Tapes

DeWAL Industries offers the highest quality, most complete line of thermal spray tapes — aluminum foil, fiberglass fabric, silicone-impregnated fiberglass, and combinations of these materials.

For wire arc and HVOF, DeWAL double-ply tapes reduce set-up time and withstand the harshest environments. DeWAL tapes can be single-ply or multi-layer.

DeWAL tapes adhere aggressively, ensuring sharp edges, resisting temperatures to 1000°F, and removing cleanly after spraying.

Call DeWAL today, then thermal spray away.

15 Ray Trainor Drive
Narragansett, RI 02882
www.dewal.com usa1@dewal.com
800-366-8356
(International: 001-401-789-9736)

Quality of Product...First

Quality Approvals: GE, Pratt & Whitney, Rolls Royce, etc.

Expo Sold Out in 2012!

International Thermal Spray Conference and Exposition

Innovative Coating Solutions for the Global Economy

May 13-15, 2013
Busan Exhibition and Convention Center
Busan, Republic of Korea

Share your expertise with the international thermal spray community. Join us for the world’s foremost conference and exposition for thermal spray technologists, researchers, manufacturers and suppliers.

From the theoretical to the applied, presentations cover the most current research, developments, applications and equipment the thermal spray industry has to offer. Registration will be available soon. Take advantage of early bird rates and online specials.

Housing
The Haeundae Centum Hotel is the headquarter hotel for ITSC 2013 and just steps from the Busan Exhibition and Convention Center (BEXCO). Exclusive low rates are available for ITSC attendees. Plan now and make your reservations.

Reserve your exhibit space, advertising and sponsorship.
Contact Kelly Thomas, National Account Manager, at kelly.thomas@asminternational.org or 1.440.338.1733.

Mark your calendars. Plan your travel. Secure your exhibit space, sponsorship and advertising.

For more information, visit www.asminternational.org/itsc.

Organized by: DVS KTSA Everything Material ITSSe
Sponsored by: Official Media Sponsors: TSS
Advancements in High-Velocity Thermal Spray Gun Design

Ralph Herber
AMT AG
Doetlingen, Switzerland

Advancements in high-velocity gun design enable improvements in coating performance and cost for application to a variety of materials processing industries. AMT AG designed and engineered a high-velocity oxy-fuel (HVOF) gun, HV 200 Hybrid, that enables multiple processes to be conducted with a single thermal spray gun design, reducing the number of processes (and guns) required to provide a duplex-coating system.

Increasing demands of various materials processing industries—from metals processing to aerospace coatings to energy generation—require increasingly sophisticated coatings solutions. In the past, such industries required multiple processes to provide a coating solution to meet the environmental conditions. The solution was often a duplex coating, with each coating layer imparting specific properties to the coating system.

Historically, the development of HVOF as a production tool proceeded primarily in two directions. The use of gas fuel results in higher temperatures, but lower speeds compared to kerosene systems. Thus, the kerosene system with its higher particle velocity was used successfully to produce dense carbide coatings with low surface roughness and minor carbide degradation because of the lower combustion temperature. By comparison, gas fuel systems produce more thermal energy (i.e., higher temperatures), which results in dense alloy coatings with good corrosion resistance.

The positive industrial use of HVOF is seen today in the application of MCrAlY coatings in land-based gas turbines. However, in situations where a dense oxidation protection coating is needed, there is often a need for a rough surface to maintain the adherence of a plasma spray zirconia-based thermal barrier coating (TBC). Thus, a device is needed that can produce a dense MCrAlY with a rough surface.

Development of the HV 200 hybrid HVOF spray gun (Fig. 1) meets this need. The gun was specially developed to produce high-volume coatings with specific coating criteria. It can be operated not only as a conventional HVOF gun running on gas or kerosene, but it can also be used with a liquid-gas fuel combination. This provides the technology to produce a dense MCrAlY coating, then enables producing a rough surface suitable for the TBC layer by switching to gas operation (Figs. 2 and 3).

A single-gun platform offers the potential to reduce coating processing steps in various materials processing industries. Neither gun hardware nor any process changes need to be conducted during the thermal spray process procedure to achieve both coating characteristics in one cycle: a dense coating with a rough surface. A multiple layer coating can be completed in one run, and combined with double powder-material injection, provides high spray rates saving time and production costs.

In addition, various combustion-fuel combinations provide the technology to influence coating structure over a wide range depending on the application. For example, as mentioned previously, it is possible to achieve very dense coating structures together with coatings that have a high surface roughness in one run without any spray process interruption. Together with the kerosene fuel, the HV 200 Hybrid gun can be operated with a wide range of conventional combustion spray gases, such as hydrogen, propane and propylene, or various combinations. Furthermore, nitrogen gas injection directly into the combustion chamber is possible, turning the gun into the cold gas spray mode, producing coatings similar to typical cold gas spray qual-
This flexibility offers a universal HVOF gun for a wide range of thermal spray applications. Features of the gun are shown in the table.

The water-cooled gun can be integrated into a conventional thermal spray control system (HVOF). Multiple hardware combinations are possible to optimize specific needs for individual industry and spray process applications.

For more information: Ralph Herber; AMT AG Switzerland, Badstrasse 34, CH-5312 Doettingen, Switzerland; tel: +41 56 245 90 19; fax: +41 56 245 90 11; ralph.herber@amt-ag.net; www.amt-ag.net.
Coating technology is a key innovation driver for almost all areas of manufacturing, for example, making scratch-proof displays for smart phones or antibacterial surfaces in refrigerators. Other coatings protect components from corrosion or aging, like in a solar cell module or a car engine, without the end user noticing their existence. In industry today, wet chemical processes or vacuum plasma processes are primarily used for coating applications. Both have drawbacks. Vacuum units are expensive, limited to smaller components and applying a coating takes a relatively long time. Wet chemical processes often involve high resource and energy consumption with the corresponding environmental damage and can also cause difficulties in the handling of material combinations for lightweight construction such as plastics/metals or aluminum/steel.

A new kind of plasma coating process that works at ambient pressure was developed. This poses a major challenge because the pressure is more than 10,000 times higher, and the absence of a vacuum reactor means they had to stop unwanted particles from forming and embedding in the coating. That was the key to developing robust, efficient industrial processes using the new plasma system.

One nozzle, various functional coatings

The central element is a plasma nozzle—no bigger than a typical spray can, but containing a highly complex coating system. In the nozzle, an electrical discharge generates small flashes; a plasma that exits from the nozzle in the form of a jet. Materials are systematically fed into the nozzle outlet where they are excited and fragmented in the plasma and deposited out of the plasma jet as a functional nanolayer onto the surface. Extremely high deposition rates were achieved, enabling fast, cost-effective production processes.

The use of a nozzle allows the coating to be applied very precisely and only where needed, conserving resources (Fig. 1). The processes are controlled so the same nozzle can be used to apply coatings with various functionalities; for example, for corrosion protection or for increasing or reducing adhesion. Only very small amounts of coating material are required, and practically all materials and material combinations can be coated (Fig. 2).

The process offers, in addition to the coating qualities and functionalities, even more benefits: it can be easily integrated into an inline production process, requires little space and is easy to automate, meaning it can be controlled via a robot. Other advantages include low investment costs and it is environmentally friendly. Depositing an adhesion-promoting coating on a car window edge before gluing it in replaces environmentally damaging chemicals. It also serves as a substitute for thick protective paint on printed circuit boards, which improves heat dissipation and hence, extends service life. The process is already used in the automotive industry and the energy sector to provide protection against corrosion and aging.

For more information: Dr. Jörg Ihde and Dr. Uwe Lommatzsch; Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM; tel: +49 421 2246-427; fax: +49 421 2246-430; joerg.ihde@ifam.fraunhofer.de; www.ifam.fraunhofer.de.
Use our ProPlasma coatings to improve your turbine component efficiency

ProPlasma HP
by Saint-Gobain Coating Solutions

RUBY for wind turbine bearings
2% porosity – 57% DE
4.1 kg/h deposition rate
7.2 kg/h feed rate

SG 204 – YZ for gas turbine components
8 to 15% porosity – 57% DE
5.08 kg/h min deposition rate
9.00 kg/h feed rate

Visit us at our ITSC booth #403

CONTACT US TODAY
USA - +1-800-243-0028
FRANCE - +33 4 90 85 85 00
GERMANY - +49 171 425 56 52
Controlling Maintenance Costs in the Petrochemical Industry Using Thermal Spray

Brian J. Fitzgerald
ExxonMobil Chemical Co.
Houston, Tex.

Historical data shows coatings are protective under insulation between 8 and 13 years. Corrosion under insulation (CUI) occurs under all insulation types and is temperature dependent, requiring preventive measures in the 25 to 300°F range. CUI leaks are dependent on equipment age and wall thickness (Fig. 1). Safety, health, and environmental (SHE) risks, and business risks increase with equipment age.

The first wave of CUI leaks occurs after about 16 to 20 years on equipment with thin walls (i.e., small-bore piping). Generally, shutdown can be avoided and SHE and business risks are not high. The second wave of CUI leaks on equipment usually occurs on equipment that is 25+ years old with thicker walls; i.e., vessels. Here, shutdown is required and SHE and business risks increase. CUI maintenance costs are 10% per year of the total maintenance budget. Continuous and cyclic sweating service is a subset of CUI leaks. Probability of failure (POF) is higher, and CUI occurs in nontypical locations. General metal loss can also be severe; increasing the likelihood of rupture (Fig. 2).

Case for Action: Cost of CUI

About 60% of petrochemical industry assets are fixed equipment (FE), and 60% of leaks are from piping. CUI is the number one maintenance cost and SHE risk, and second in frequency. FE accounts for 35% of maintenance cost. Piping drives FE maintenance costs (55% of FE maintenance cost is piping), and CUI drives piping maintenance costs (50% of piping maintenance is CUI). A goal is to reduce repeated loss of containment events (SHE and reliability) because it distracts and disrupts the maintenance organization to work on a reactive basis.

To move toward a maintenance-free, inspection-free operating mode, thermal spray aluminum (TSA) is used. It has competitive total initial costs and lower life-cycle costs. Two application methods for TSA are flame spray and arc spray (Fig. 3), and they can be carried out both in the shop and in the field. TSA is suitable for wide temperature range; from cryogenic to 540˚C (1000˚F). Coating thicknesses from 250-375 µm (10-15 mil) provide barrier properties plus cathodic protection, with an estimated life of 30 to 40 years.

TSA in the petrochemical industry

TSA is recognized as “Best in Class” for CUI prevention by the European Federation of Corrosion (EFC). EFCTSA is included in industry standards including:

- NACE SP 0198-2010 includes TSA from -45˚C to 595˚C
- CINI 7.4.04 includes TSA for CUI protection up to 540˚C (1000˚F)
- EFC publication #55 lists TSA as first choice for CUI prevention
- NORSOK M50 recommends TSA for insulated equipment

ExxonMobil Chemical has widely used TSA for CUI prevention in maintenance and other projects. Equipment coated with TSA has been fabricated around globe, and the TSA experience curve is the primary cost drivers vs. paint costs. The supply chain is responding rapidly to the application of TSA, investing in people and equipment. TSA spray equipment suppliers are available to assist contractors with applicator training and equipment leasing.

To maximize shop application of TSA, shop welds should be coating before field hydrotesting. Vents, drains, and small-bore piping should be fabricated in the

Fig. 1 — CUI leaks are dependent on equipment age and wall thickness.

Fig. 2 — Small bore bleeder valve with severe corrosion.
shop and TSA coated. For field welds, keep the TSA coating 25 mm (1 in.) away from the welds. Quality control testing is important, but do not overspecify. While paint coatings are often damaged in handling, TSA scratches and nicks do not need to be repaired.

Piping field welds

Safety procedures with realistic hazard evaluation are essential for safe, efficient TSA on the job site (Fig. 4). Flame spray TSA requires no less attention to safe procedures than field pipe welding. This is best handled by assigning a dedicated TSA field supervisor to coordinate field TSA applications. Using a “dull” chisel test to determine TSA thickness is a useful quality control tool in the field.

Summary and challenges

TSA is considered Best in Class for CUI prevention. It is cost competitive after going through a learning curve. Projects have shown that TSA is now widely available; the application and supply chain is growing. Companies spending 10% of their maintenance budget on CUI can reduce costs by using TSA. Challenges include overcoming perceived high initial costs, improving estimating accuracy, paying better attention to productivity, and bidding on the complete job rather than just on one job element. It also is important not to overspecify quality assurance and quality control. Equipment should be tested at least once per shift, and it is imperative to obtain the required surface preparation before coating and achieving the correct thickness.

For more information: Brian J. Fitzgerald is lead materials specialist, ExxonMobil Chemical Co.; 4500 Bayway Dr., Baytown, TX 77520; tel: 281/834-2259; brian.j.fitzgerald@exxonmobil.com; www.exxonmobilchemical.com.
The Journal of Thermal Spray Technology (JTST), the official journal of the ASM Thermal Spray Society, publishes contributions on all aspects – fundamental and practical – of thermal spray science, including processes, feedstock manufacture, testing, and characterization. As the primary vehicle for thermal spray information transfer, its mission is to synergize the rapidly advancing thermal spray industry and related industries by presenting research and development efforts leading to advancements in implementable engineering applications of the technology. Articles from the September issue, as selected by JTST Editor-in-Chief Christian Moreau, are highlighted here. In addition to the print publication, JTST is available online through www.springerlink.com. For more information, please visit www.asminternational.org/tss.

“Cross-Sectional Residual Stresses in Thermal Spray Coatings Measured by Moiré Interferometry and Nanoindentation Technique”
Jianguo Zhu, Huimin Xie, Zhenxing Hu, Pengwan Chen, and Qingming Zhang

A plasma-spray thermal barrier coating (TBC) was deposited on a stainless steel substrate. Residual stresses were first measured using moiré interferometry combined with a cutting relaxation method. Fringe patterns in the specimen cross section clearly demonstrate deformation caused by residual stress in thermal spray coatings. However, restricted by the sensitivity of moiré interferometry, there are few fringes in the top coat, and large errors may exist in evaluating residual stress in the top coat. The nanoindentation technique was used to estimate residual stresses across the coating thickness. The stress/depth profile shows that process-induced stresses after thermal spray are compressive in the top coat and have a tendency to a more compressive state toward the interface. In addition, the stress gradient in the substrate is nonlinear, and tensile and compressive stresses appear simultaneously for self-equilibrium in the cross section.

“Investigation of Deposition Behavior of Cold-Sprayed Magnesium Coating”

Two types of magnesium powders with different particle size distributions were deposited by cold spray at different main gas temperatures. The deposition efficiency of particles increased, and the porosity of coatings decreased with increasing gas temperature. The deposition efficiency of particles increased when using the powder with a smaller particle size distribution. Stainless steel and aluminum plates were used as substrates. The commercial finite element software ABAQUS was used to help better understand the deformation behavior of particles and substrates. The mean bonding strength slightly increased when aluminum plates were used as substrates. The bonding mechanism of Mg coatings on stainless steel and aluminum substrates was discussed.

“Improving the Generalization Ability of an Artificial Neural Network in Predicting In-Flight Particle Characteristics of an Atmospheric Plasma Spray Process”
T.A. Choudhury, N. Hosseinzadeh, and C.C. Berndt

We applied artificial neural network into an atmospheric plasma spray process for predicting in-flight particle characteristics, which have significant influence on the in-service coating properties. One major problem for function-approximating neural network is over-fitting, which reduces the generalization capability of a trained network and its ability to work with sufficient accuracy under a new environment. Two methods are used to analyze the improvement in the network’s generalization ability: (1) cross-validation and early stopping, and (2) Bayesian regularization. Simulations are performed both on the original and expanded database with different training conditions to obtain the variations in performance of the trained networks under various environments. The study further illustrates the design and optimization procedures and analyzes predicted values, with respect to the experimental ones, to evaluate performance and generalization ability of the network. The simulation results show that performance of trained networks with regularization is improved over that with cross-validation and early stopping and, the generalization capa-
ASM International and the Thermal Spray Society are offering two popular courses. Created for thermal spray technologists, engineers, technicians, and other professionals entering the thermal spray field, these courses provide a thorough grounding and understanding of current thermal spray processes and operator methodologies for safety.

Thermal Spray Operator Preparation Course 1.5 CEUs

As the thermal spray profession has changed, so has the need to ensure safe and consistent methods for thermal spray operators. ASM International has brought together the leaders in the Thermal Spray Society and compiled their knowledge and experience in a comprehensive, easy-to-understand course.

Conveniently scheduled offerings throughout the year:

For more CTSO certification information, visit us online at www.asminternational.org/ctso.

Thermal Spray Technologies 1.5 CEUs

Instructor: Christopher Berndt, PhD

Learn complex scientific concepts as well as practical applications and accepted thermal spray practices. Metallographic preparation and the methods used to ensure rigorous and practical evaluation are addressed.

November 29-30, 2012 • Singapore

Plan to register for your thermal spray education courses today at www.asminternational.org/education.
bility of the networks is improved, preventing any phenomenon associated with over-fitting.

“Optimizing Compliance and Thermal Conductivity of Plasma Sprayed Thermal Barrier Coatings via Controlled Powders and Processing Strategies”
Yang Tan, Vasudevan Srinivasan, Toshio Nakamura, Sanjay Sampath, Pierre Bertrand, and Ghislaine Bertrand

The properties and performance of plasma spray thermal barrier coatings (TBCs) are strongly dependent on microstructural defects, which are affected by starting powder morphology and processing conditions. Of particular interest is the use of hollow powders that not only allow for efficient melting of zirconia ceramics, but also produce lower conductivity and more compliant coatings. Typical industrial hollow spray powders have an assortment of densities resulting in masking potential advantages of the hollow morphology. In this study, process mapping strategies were conducted using a novel uniform shell thickness hollow powder to control defect microstructure and properties. Correlations among coating properties, microstructure, and processing reveal feasibility to produce highly compliant, low-conductivity TBC through a combination of optimized feedstock and processing conditions. Results are presented through the framework of process maps establishing correlations among process, microstructure, and properties, and providing opportunities for optimization of TBCs.

“Microstructural Characterization and Strengthening-Toughening Mechanism of Plasma-Sprayed Al2O3-Cr2O3 Composite Coatings”
Kai Yang, Jingwei Feng, Xiaming Zhou, and Shunyan Tao

Al2O3, Cr2O3, and Al2O3-Cr2O3 coatings were fabricated by plasma spray. X-ray diffraction was used to determine the phase composition of powders and coatings. The morphologies and microstructures of the coatings were characterized using electron probe microanalyzer and transmission electron microscopy. Vickers hardness, fracture toughness, and bending strength of the coatings were measured. Al2O3-Cr2O3 composite coatings show better comprehensive mechanical properties than the individual Al2O3 and Cr2O3 coatings, which are attributed to the former’s larger intersplat adhesion or interlamellar cohesion and lower porosity. Solid solution strengthens the phase interfaces and grain boundaries, which is beneficial to improve the mechanical performance of the composite coatings.

Feedstock powder cross-sectional images (left) commercially obtained HOSP powder; (right) hollow powder.

TEM image of as-sprayed Al2O3 coating.

Powders for the future

TEKMAT™ Dur
hardfacing and wear

TEKMAT™ Pur
high purity, low oxygen

TEKMAT™ Flo
ease of handling, flow

Powder treatment services also available.

For more information: +1 819 820 7771 www.tekna.com info@tekna.com
A More Efficient Surface

To make a more efficient fuel cell, SOFC engineers partnered with Sulzer for the answer.

Let’s be frank. When it comes to the market potential for fuel cells, the sky is the limit. But to get there, fuel cell manufacturers are hard at work developing cells that are more efficient to operate and manufacture. So we were thrilled when they asked us to work with them. Together, we developed robust material solutions and application technologies to apply thin and dense ceramic layers to solid oxide fuel cell interconnects. The result? Today, tens of thousands of interconnects are coated efficiently and economically with hundreds of thousands scheduled for the future. And that’s a lot of green and efficient energy.

Working together, we can do great things.

SULZER

For further information:
Tel. +1 516 334 1300
info@sulzermetco.com

www.sulzer.com/Industries/Power-Generation/Fuel-Cells
Improved Training Prevents Poor Performance

ASM will customize any of our materials training programs for your applications and your employee needs.

Choose from training programs in:
- Materials Engineering
- Failure Analysis
- Heat Treating
- Metallography
- Laboratory Methods, and more

Your employees don’t have to travel, resulting in lower training costs. Train employees at all skill levels and stay competitive with better trained staff.

We have trained engineers, R&D, sales, technicians, scientists at organizations just like yours, including:
- NASA
- US Department of Defense
- Duke Energy
- Los Alamos National Laboratory
- Boeing
- Honda

Ask for your FREE, no-obligation training assessment and get a FREE Periodic Beer Glass. (Did you know that Carlsberg Brewery was the location of Søren Sorensen’s work on the pH scale?)

Contact John Cerne for complete details.
1.800.336.5152, ext. 5637
Email: john.cerne@asminternational.org