Biomaterials in Orthopaedic Surgery

Federico Ángel Rodríguez-González

ASM International®
Materials Park, Ohio 44073-0002
www.asminternational.org
No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the written permission of the copyright owner.

First printing, December 2009

Great care is taken in the compilation and production of this book, but it should be made clear that NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE GIVEN IN CONNECTION WITH THIS PUBLICATION. Although this information is believed to be accurate by ASM, ASM cannot guarantee that favorable results will be obtained from the use of this publication alone. This publication is intended for use by persons having technical skill, at their sole discretion and risk. Since the conditions of product or material use are outside of ASM’s control, ASM assumes no liability or obligation in connection with any use of this information. No claim of any kind, whether as to products or information in this publication, and whether or not based on negligence, shall be greater in amount than the purchase price of this product or publication in respect of which damages are claimed. THE REMEDY HEREBY PROVIDED SHALL BE THE EXCLUSIVE AND SOLE REMEDY OF BUYER, AND IN NO EVENT SHALL EITHER PARTY BE LIABLE FOR SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES WHETHER OR NOT CAUSED BY OR RESULTING FROM THE NEGLIGENCE OF SUCH PARTY. As with any material, evaluation of the material under end-use conditions prior to specification is essential. Therefore, specific testing under actual conditions is recommended.

Nothing contained in this book shall be construed as a grant of any right of manufacture, sale, use, or reproduction, in connection with any method, process, apparatus, product, composition, or system, whether or not covered by letters patent, copyright, or trademark, and nothing contained in this book shall be construed as a defense against any alleged infringement of letters patent, copyright, or trademark, or as a defense against liability for such infringement.

Comments, criticisms, and suggestions are invited, and should be forwarded to ASM International.

Prepared under the direction of the ASM International Technical Book Committee (2008–2009), Lichun L. Chen, Chair.

ASM International staff who worked on this project include Scott Henry, Senior Manager of Product and Service Development; Ann Britton, Editorial Assistant; Bonnie Sanders, Manager of Production; Madrid Tramble, Senior Production Coordinator; and Diane Whitelaw, Production Coordinator.

Library of Congress Control Number: 2009937678
SAN: 204-7586

ASM International®
Materials Park, OH 44073-0002
www.asminternational.org

Printed in the United States of America

About the image on the title page:
The three sets of circular lines symbolize the main components that contribute to advancements in biomaterials: the atom, the continuous search for improvements, and the scientific evolution of newer biomaterials.
To my wife, my four sons, and my daughter for their understanding, patience and support.

To the memory of two outstanding and brilliant surgeons:
 Professor Ángel Martinez-Villarreal, M.D.
 Professor Carlos de la Garza-Páez, M.D.

To my Professors of The University of Texas at Austin:
 Professor Robert N. Little, Ph.D., D.Ed
 Professor Stephen J. Gage, Ph.D.
 Professor Kenneth M. Ralls, Sc.D.
 Professor William R. Upthegrove, Ph.D.
Contents

CHAPTER 1 Introduction to Biomaterials in Orthopaedic Surgery ... 1
 1.1 Definition of Biomaterial 1
 1.2 Interaction of Biomaterials with the Human Body 1
 1.3 Biomaterial Types in Orthopaedics 3
 1.4 Bone Allografts ... 4
 1.5 Orthopaedic Implants 5
 1.6 International Standards for Orthopaedic Devices 7

CHAPTER 2 Structures of Solids and Phase Diagrams 11
 2.1 Crystal Geometry ... 11
 2.2 Bond Types in Atoms and in Molecules 12
 2.3 Melting of Metals ... 16
 2.4 Solid Solutions ... 16
 2.5 Phase Diagrams ... 17
 2.6 Isothermal Time Temperature Transformation Diagram for Eutectoid Steel (0.80% C) 21
 2.7 Definitions of Some Additional Heat Treatment Processes Related to Metallic Orthopaedic Devices 23

CHAPTER 3 Types of Biomaterials in Orthopaedics 25
 3.1 Metallic Biomaterials 25
 3.2 Nonmetallic Biomaterials 40

CHAPTER 4 Basic Principles of Biomechanics 51
 4.1 Force Analysis ... 51
 4.2 Static Equilibrium .. 58
 4.3 Friction, Work, and Energy 61
 4.4 Elastic Behavior of Solids 67
4.5 Anelasticity ... 71
4.6 Viscoelasticity ... 72
4.7 Biomechanical Behavior of Bones 72
4.8 Biomechanical Behavior of Intervertebral Spine Discs
 (Physical Model) .. 72
4.9 Torsion in Metallic Biomaterials 73
4.10 Bending in Metallic Biomaterials 76

CHAPTER 5 Applications of Materials Testing 79
5.1 Mechanical Testing ... 79

CHAPTER 6 Selected Applications of Biomaterials in
 Orthopaedic Surgery ... 91
6.1 Use of Diagnostic Images 91
6.2 Surgical Planning Procedure 92
6.3 Osteosynthesis .. 93
6.4 Hip Joint Replacements 100
6.5 Knee Joint Replacements 110
6.6 Nonconventional Modular Tumor Implants 113
6.7 Spine Implants ... 113

CHAPTER 7 Bone Allografts .. 127
7.1 Introduction ... 127
7.2 Bone Autografts .. 127
7.3 Bone Allografts—The Natural Alternative 128
7.4 Standards for Tissue Banking 128
7.5 Sterilization by Gamma Irradiation 130
7.6 Biomechanical Effects of Gamma Irradiation on Bone
 Allografts ... 132
7.7 Types and Applications of Bone Allografts 132
7.8 Definitions of Terms of the American Association of
 Tissue Banks ... 134

CHAPTER 8 Clinical Cases .. 145
8.1 Right Humeral Fracture 145
8.2 Fracture of the Right Radius and Ulna 147
8.3 Fracture of the Radius and Ulna 149
8.4 Fracture of the Radius .. 150
8.5 Closed Diaphyseal Fracture of the Right Femur 151
8.6 Exposed Tibia and Fibula Fractures 152
8.7 Exposed High-Energy Tibia and Ulna Fracture and
 Compromised Soft Tissue 154
8.8 Exposed Tibia Fracture ... 156
8.9 Periprosthetic Fracture in the Right Femur 158
8.10 Distal Right Femoral Osteosarcoma 159
8.11 Deformity Caused by Collapsed Massive Bone Allograft
and Tumor Relapse ... 162
8.12 Proximal and Distal Loosening of a Prosthetic Knee
Replacement as a Result of Infection 166
8.13 Hernia in a Cervical Disc ... 171
8.14 Isthmic Lytic Spondylolisthesis 173
8.15 Spinal Fracture at L1 .. 175

CHAPTER 9 Failures Modes of Implants 177
9.1 Biomaterial Interactions ... 177
9.2 Some Clinical Results in Follow-up after Total Hip Joint
Replacements ... 186
9.3 Implant Wear in Hip and Knee Joint Replacements 191
9.4 Artifacts of Metallic Implants in Magnetic Resonance
Imaging (MRI) .. 192

APPENDIX 1 Determination of Composition at a Point in
the Iron-Chromium-Nickel Ternary Phase Diagram
at 650 °C ... 199

APPENDIX 2 The Pythagorean Theorem and Natural
Trigonometric Functions ... 201

APPENDIX 3 International (SI) Units for Force, Area,
and Stress ... 205
Foreword

Being invited by Dr. Federico Ángel Rodríguez to contribute the foreword to his book is an honor. It is greatly appreciated, since this work represents the culmination of his dreams and his many years of hard work and research.

Biomaterials are the keystone of our time; a “dreamed matter.” Matter because they are handled and felt on a daily basis, and dreamed because we expect them to be magical structures that will fulfill and resolve all of our needs. Much advancement has been achieved and many dreams have come true in recent times. A brief look at what has happened in the last century shows how the new materials have contributed to surgery and to the well-being of many people.

Knowledge of biomaterials is fundamental to their appropriate use in medicine. How many times the profession traumatology has been compared to that of a carpenter or a hardware dealer!

Orthopaedic surgery and traumatology have been marked by the instruments of the profession. Luminaries such as Danis, Kuntscher, Charnley, Müller, and so many others have contributed greatly to the field, and their names are associated with specific designs and materials. I am referring to skeletal biomaterials, but their importance in heart surgery, general surgery, urology, and in many other medical specialties should not be forgotten.

Biomechanics is also concerned with the study of biomaterials; for that reason it is important to review some of the basic concepts; as it is done in this book. The technical principles for the application of biomechanics are inherent in the results of mechanical tests. Much has been learned about the possibilities of a material when looking at results as well as failures.

Failures, such as fracturing and corrosion, have helped surgeons improve their techniques and engineers improve their designs. The path has always been walked along with patients who have agreed to try out new designs believed to improve upon the previous ones.

At the end of the nineteenth century, ivory implants were used. Later on screws and metallic plates were implanted with a basic and insufficient
anesthesia, with low quality materials, without mechanical principles that supported their placement, and with a high risk of infections. Those factors eliminated many brilliant ideas. The improvement of anesthesia techniques, the understanding of mechanics applied to biology, and the incorporation of advanced metals, metallic alloys, polymers, ceramics, and composites, on top of safer antibiotic therapies are the factors that have made orthopaedic surgery move forward.

We now have resistant materials to replace bones, and elastic materials capable to act as soft tissue substitutes. Stainless steels, commercially pure titanium, titanium base alloys, cobalt chrome alloys, polyethylene or methyl-methacrylate are essential items in orthopaedic surgery and traumatology.

Also, the establishment of bone and tissue banks has contributed to extend the possibilities of biomaterials. Bone or ligament grafts are organic biological materials with an inert structure similar to the one to be replaced and with the same integration problems as the rest of the biomaterials. Research and the observation of the established rules for the tissue banks allow having grafts of all kinds and probably, in a near future will allow a fast integration of grafts coming from other species, obtained \textit{in vivo}, to be implanted.

We are in the world of coatings, metals combined with biological substances in search of a better incorporation to the organism. In addition, we are experiencing a new period with reabsorbable materials that fulfill their function during a period of time and then gradually undergo reabsorption. Intelligent biomaterials are another emerging possibility.

Nowadays, an interesting period has begun involving materials implanted with cellular cultures. A material should no longer be only inert or active, but may require that cells adhere to the surfaces and differentiate and proliferate in the interior. Growth factors that stimulate cellular differentiation can be incorporated to the material to be considered live material.

The world of biomaterials, after years of sustained knowledge increase, is showing a new impulse and many possibilities are open; many investigations are needed. All this will be possible if history of the development of the different materials is spread, and if we have the basic knowledge offered by books like this one. This book has been written by Professor Federico Ángel Rodríguez thanks to his educational activity and a lifetime dedication to the mechanical study of materials. Professor Rodríguez has been studying biological integration of biomaterials in the organism, and he has been transmitting and shaping his knowledge in a didactic way, as the reader may note.

This book aims to satisfy the knowledge of doctors and engineers who, after finishing their professional studies, would like to enter their neighbor world and continue developing new implants.
Implantation of new materials will benefit patients and will contribute to solve some of the exciting challenges that many branches of surgery currently have.

Professor Francisco Forriol-Campos, M.D., Ph.D.
Orthopaedic Surgery and Traumatolgy Department
University Clinic of Navarra
School of Medicine, University of Navarra
Pamplona, Spain
Preface

Biomaterials in Orthopaedic Surgery is directed to residents entering the specialty in orthopaedics and traumatology as well as to those professionals who wish to update their knowledge in the very extensive field of application of biomaterials in orthopaedics.

This book will be useful to professionals associated with orthopaedic devices, especially those involved in their design and manufacture.

Surgical practice in orthopaedics requires a strong interaction of different disciplines of science, such as biology, biomechanics, metallurgy, materials science, chemistry and, quite recently, biotechnology and nanotechnology.

The structure of the table of contents in this book is intended to help the reader obtain, through his learning process, a strong and firm grasp of the fundamental principles of biomechanics and biomaterials; both are essential to the study and comprehension of joint physiology and the issues dealing with their application in orthopaedic surgery.

This book will also help the reader have a clear frame of reference regarding the current state of science and infer the future direction of research needed to solve some of the remaining problems of biomaterials that are strongly linked to orthopaedics.

Every chapter except Chapter 8, “Clinical Cases,” has a number of bibliographic references, a list of books for further reading, and an enumerated set of educational objectives that serve as a teaching tool and are aimed to reinforce the content presented in each chapter.

The creation of this book was possible only with the support and help from many people. I wish to thank and acknowledge the following colleagues for their support and valuable assistance:

* Professor Carlos de la Garza-Páez M.D., former Chairman of the Orthopaedics and Traumatology Service of the Dr. José E. González University Hospital and of the Faculty of Medicine of the Universidad Autónoma de Nuevo León, for his extraordinary and enthusiastic support throughout the writing of the book.
• **Oscar F. Mendoza-Lemus M.D.**, current Chairman of Orthopaedics and Traumatology Service, for his great and continuous support
• **Carlos Cuervo-Lozano M.D.**, Graduate Advisor of the Orthopaedics and Traumatology Program, for his direct advice, valuable suggestions, and great contributions of many clinical cases.
• **Eduardo Álvarez-Lozano M.D., Ph.D.**, general coordinator in charge of the Bone and Tissue Bank of University Hospital, for his extraordinary advice regarding internal and external bone fracture fixation.
• **Professor Francisco Forriol-Campos M.D., Ph.D.**, for writing the Foreword, which provides an excellent description of the book.
• **Víctor Manuel Peña-Martínez M.D.**, for his eager contribution and advice in external bone fracture fixation.
• **Pedro M. Reyes-Fernández M.D.**, for his advice in the cervical spine prosthesis and cervical and lumbar spine implants.

I also value the assistance received from many other distinguished orthopaedic surgeons that collaborated with their very extensive experience in the clinical cases.

Equally appreciated is the assistance of Professors Guillermo Elizondo-Riojas M.D. and José Bernardo Gutiérrez-Sánchez M.D., Ph.D., radiologists of The University Center for Diagnostic Images, for their revision and comments to the manuscript for the section “Artifacts of Metallic Implants in Magnetic Resonance Imaging (MRI)” presented in Chapter 9.

This book has been developed from the notes for a series of lectures given at the Dr. José E. González University Hospital. I want to express deep gratitude to the orthopaedic surgeons at the University Hospital.

Also, I wish to thank the ASM International publishing staff, including Mr. Scott Henry, Mr. Charles Moosbrugger, Ms. Pam Brown, Ms. Ann Britton, and Ms. Madrid Tramble, for their valuable assistance before and during the printing process of the book. My great appreciation to the reviewers for giving me critical advice of a constructive nature, I am also very grateful to individuals, institutions, and organizations that gave permission to use their data and illustrations, including ASTM International, The Hip Society, and the American Association of Tissue Banks. Full credit is given to the appropriate sources.

I also wish to acknowledge Mr. Carlos Limón and Mr. Omar Robles for their time spent in preparing the extensive number of figures.

Federico Ángel Rodríguez-González., Ph.D., FASM
Monterrey, Nuevo León
Mexico
2008
Collaborators

Professor Carlos de la Garza-Páez M.D.
Professor Oscar F. Mendoza-Lemus M.D.
Professor Eduardo Álvarez-Lozano M.D., Ph.D.
Professor Carlos Eduardo Cuervo-Lozano M.D.
Professor Francisco Forriol-Campos M.D., Ph.D.
Professor Víctor Manuel Peña-Martínez M.D.
Professor José Fernando de la Garza-Salazar M.D.
Professor Tomás Ramos-Morales M.D.
Professor Rafael Briseño-Navarro M.D.
Professor Pedro Martín Reyes-Fernández M.D.
Professor Oscar Armando Martínez-Gutiérrez M.D.
Federico Ángel Rodríguez-González, Ph.D., FASM, is a Professor and a Research Scientist with the Orthopaedics and Traumatology Service of the Dr. José E. González University Hospital of the Faculty of Medicine of the Universidad Autónoma de Nuevo León, México.

He received his B.S. in Physics from the Instituto Tecnológico y de Estudios Superiores de Monterrey, in Monterrey, México, his M.S. in Nuclear Science from The University of Michigan at Ann Arbor, Michigan, and his Ph.D. in Mechanical Engineering from the University of Texas at Austin.

His background combines research in application of the neutron activation analysis technique to study the interstitial oxygen in niobium-titanium solid solution alloys in order to determine the effect of interstitial oxygen on the superconductive transition temperature of these materials; industrial research in steelmaking using sponge iron as feedstock in electric arc furnaces to produce low carbon steels; and the optimization of the steelmaking process.

His teaching experience includes courses in nuclear and experimental physics, metallurgy, materials science, and biomaterials.

Dr. Rodríguez has presented papers related with his research work in national and international forums. He has also been a consultant for several industrial companies.

His current research interests include implant wear in hip and knee joint replacements, loosening of femoral stem components, acetabular cup and femoral stem component coatings, massive bone allograft mechanic properties sterilized with gamma radiation, design considerations of some joint prosthetic devices, and therapy in soft and hard tissue tumors.