CONTENTS

Foreword and Acknowledgments ...xi
SMST-2007 Event Members ..xiii
Preface ..xv

I. TINI-BASED SHAPE MEMORY/SUPERELASTIC ALLOYS

PROCESSING AND MICROSTRUCTURE

Properties of Amorphous/Nanocrystalline TiNi Wires ..1
K. Tsuchiya¹, Y. Hada², M. Katahira², Y. Todaka², M. Umemoto², T. Koike³,
(1) National Institute for Materials Science, Tsukuba, Ibaraki, Japan; (2) Toyohashi University of
Technology, Toyohashi, Aichi, Japan; (3) Asahi Intecc, Co., Ltd., Seto, Aichi, Japan

Submicron Fiber of NiTi Prepared by Electrolytic/Chemical Polishing9
M. Kimata, K. Hasegawa, H. Kato, K. Sasaki; Hokkaido University, Sapporo, Japan

Structure and Properties Features of Nanostructured Ti-Ni SMA after
Severe Plastic Deformation and Post-Deformation Annealing17
V. Brailovski¹, K. Inaekyan¹, S. Prokoshkin¹, A. Korotitskiy², A. Glezer³;
(1) École de technologie supérieure, Montreal, Quebec, Canada; (2) Moscow State Institute of
Steel and Alloys, Moscow, Russia; (3) G.V. Kurdyumov Institute of Physical Metallurgy,
Moscow, Russia

Electroplastic Deformation Effects in Shape Memory TiNi Alloys27
V. Stolyarov¹, S. Prokoshkin²; (1) Mechanical Engineering Research Institute, Moscow, Russia;
(2) Moscow Institute of Steel and Alloys, Moscow, Russia

A New Fabrication Method for Functionally Graded Shape Memory Alloy33
R. Matsui¹, F. Yoshida¹, H. Kyogoku²; (1) Hiroshima University, Hiroshima, Japan;
(2) Kinki University, Hiroshima, Japan

Simultaneous Five-Axes Micro-Milling of NiTi Shape Memory Alloys39
D. Biermann, K. Weinert, F. Kahleyß, A. Baschin;
Technische Universität Dortmund, Dortmund, Germany

Characterization of Transformation Localization during
Pseudoelastic Cycling of NiTi ...47
J. Olbricht, A. Schäfer, M.F.-X. Wagner, G. Eggeler;
Ruhr-University Bochum, Bochum, Germany

Pre-Stressed NiTi: Effects of the Thermodynamic Forces and Time55
V. Torra¹, A. Isalgue¹, C. Auguer¹, F.C. Lovey², J.L. Pelegrina², P. Terriaull³;
(1) Polytechnical University of Catalonia, Barcelona, Catalonia, Spain;
(2) Centro Atomico Bariloche, S.C. Bariloche, Argentina;
(3) École de technologie supérieure, Montréal, Québec, Canada
Effect of Dislocation Substructure and Grain Structure of B2-Austenite on Martensite Lattice Parameters and Transformation Lattice Strain in Binary Ti-Ni Alloys .. 63
S.D. Prokoshkin¹, A.V. Korotitskiy¹, V. Brazklovski², K.E. Inaeykan⁵;
(1) Moscow Institute of Steel and Alloys, Moscow, Russia; (2) Ecole de Technologie Superieure, Montreal, Quebec, Canada

The Observation of Phonon by Inelastic Xray Scattering for Ti₅₀Ni₄₄Fe₆ and Ti₅₀Ni₄₂Fe₈ ...71
D. Kitanosono¹, T. Ohba¹, S. Morito¹, T. Fukuda², M.-S. Choi², T. Kakeshita²,
S. Tsutsui³, A.Q. Baron³; (1) Shimane University, Matsue, Japan; (2) Osaka University,
Osaka, Japan; (3) SPring-8/JASRI, Hyougo, Japan

Effect of Aging on Thermomechanical Characteristics of Ti-Ni-Cu Shape Memory Alloy ...77
T. Yamamoto¹, A. Goto¹, T. Sakuma¹, Y. Takeda²; (1) Oita University, Oita, Japan;
(2) TAKE R&D, Shizuoka, Japan

Effects of Stoichiometry on Transformation Temperatures and Actuator-Type Performance of NiTiPd and NiTiPdX High-Temperature Shape Memory Alloys ... 83
G.S. Bigelow, D.J. Gaydosh, A. Garg, S.A. Padula II, R.D. Noebe;
NASA Glenn Research Center, Cleveland, OH, USA

Crystallography of the NiTi Alloy Martensitic Deformation ...93
L. Monassevitch; NiTi Surgical Solutions Ltd., Netanya, Israel

Precipitation in Ni-Rich Ti-Zr-Ni Shape Memory Alloys by Isothermal Ageing101
A.M. Sandu¹, S. Yamamoto¹, Y. Todaka¹, M. Umemoto¹, K. Tsuchiya², M. Saito²,
T. Hara², Y. Matsui²; (1) Toyohashi University of Technology, Aichi, Japan;
(2) National Institute for Materials Science, Ibaraki, Japan

Properties of Porous NiTi SMAs Fabricated by Low Pressure Sintering ...109
H. Li¹, B. Yuan¹, Y. Gao¹, M. Zhu¹, C.Y. Chung²; (1) South China University of Technology,
Guangzhou, P.R. China; (2) City University of Hong Kong, Kowloon, Hong Kong

Computational Thermodynamics-Based Design of Nanodispersion-Strengthened Shape Memory Alloys ...115
M.D. Bender, G.B. Olson; Northwestern University, Evanston, IL, USA

Shape Memory Composite with SMA and SMP ...123
H. Tobushi¹, Y. Ejiri¹, S. Hayashi², N. Miwa¹, K. Hoshio³; (1) Aichi Institute of Technology,
Aichi, Japan; (2) DiAPLEX Co., Ltd., Tokyo, Japan; (3) Churyo Engineering Co., Ltd., Aichi, Japan

On the Role of Carbon during Processing of NiTi Shape Memory Alloys ...131
J. Frenzel, K. Neuking, G. Eggeler, C. Haberland; Ruhr-Universität Bochum, Bochum, Germany

MECHANICAL PROPERTIES—DEFORMATION, FATIGUE AND FRACTURE

Effect of Strain Amplitude, Thermal-Mechanical Cycling, and Ageing Treatment on Internal Friction of Porous NiTi Shape Memory Alloys ...139
Y.P. Zhang¹, X.P. Zhang¹, C.Y. Chung²; (1) South China University of Technology,
Guangzhou, PR China; (2) City University of Hong Kong, Hong Kong, PR China
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermo-Mechanical Processing, Microstructure, and Bending Rotation Fatigue of Ultra-Fine Grained NiTiCr-Wires</td>
<td>149</td>
</tr>
<tr>
<td>M. Frotscher¹, J. Buraw¹, M.F.-X. Wagner¹, K. Neuking¹, G. Eggeler¹, P. Schön², R. Böckmann²; (1) Ruhr-Universität Bochum, Bochum, Germany; (2) Universitätssklinik für Mund-Kiefer-Gesichtschirurgie, Bochum, Germany</td>
<td></td>
</tr>
<tr>
<td>Fatigue Life in NiTi for Damping Applications</td>
<td>159</td>
</tr>
<tr>
<td>V. Torra¹, A. Isalgue¹, F. Martorell¹, F.C. Lovey², H. Soul², P. Terrail²; (1) Polytechnical University of Catalonia, Barcelona, Spain; (2) Centro Atomico Bariloche, Bariloche, Argentina; (3) Université de Québec, Montréal, Canada</td>
<td></td>
</tr>
<tr>
<td>Fatigue Study on R-Nitinol vs. Nitinol Using Rotating Beam Fatigue Tester</td>
<td>167</td>
</tr>
<tr>
<td>Z. Lin, S. Wong, A. Tahran; Abbott Vascular, Santa Clara, CA, USA</td>
<td></td>
</tr>
<tr>
<td>Compression Behavior of Superelastic Nitinol Tubing</td>
<td>175</td>
</tr>
<tr>
<td>F. Zhou¹, S. Zhang³, M.H. Wu¹, X.-Y. Gong³; (1) Edwards Lifesciences LLC, Irvine, CA, USA; (2) Medical Implant Mechanics LLC, Aliso Viejo, CA, USA</td>
<td></td>
</tr>
<tr>
<td>Stress-Induced Martensitic Transformation Cooperative Collective Effects in Superelastic Polycrystalline TiNi Shape Memory Alloys</td>
<td>183</td>
</tr>
<tr>
<td>S.C. Mao¹, X.D. Han¹, Z. Zhang¹, M.H. Wu¹; (1) Beijing University of Technology, Beijing, China; (2) Edwards Lifesciences LLC, USA</td>
<td></td>
</tr>
<tr>
<td>Cyclic and Fatigue Behavior of NiTi Shape Memory Alloys</td>
<td>193</td>
</tr>
<tr>
<td>Z. Moumni¹, W. Zaki¹, H. Maitournam¹; (1) Ecole Nationale Supérieure de Techniques Avancées, Paris, France; (2) Ecole Polytechnique, Palaiseau Cedex, France</td>
<td></td>
</tr>
<tr>
<td>The Influence of Partial Unloading on the Effect of Pseudoelasticity and Durability of Alloy Ti-50.8 at.% Ni</td>
<td>201</td>
</tr>
<tr>
<td>M.A. Khusainov¹, V.A. Andreev², A.B. Bondarev²; (1) Yaroslav the Wise Novgorod State University, St.-Peterburgskaya, Russia; (2) Industrial Center “MATEKS, Moscow, Russia</td>
<td></td>
</tr>
<tr>
<td>Observation of Lüders’ Band Deformation during Superelasticity in NiTi Alloy Polycrystals</td>
<td>209</td>
</tr>
<tr>
<td>H. Kato¹, K. Sasaki¹, T. Morii¹; (1) Hokkaido University, Sapporo, Japan; (2) University of Manchester, Manchester, UK</td>
<td></td>
</tr>
<tr>
<td>Rotary Driving Characteristics of a Shape-Memory Alloy Thin Strip Element</td>
<td>217</td>
</tr>
<tr>
<td>H. Tobushi, T. Sakuragi, Y. Sugimoto; Aichi Institute of Technology, Toyota, Japan</td>
<td></td>
</tr>
<tr>
<td>Influence of Cu Content on Thermo-Mechanical Properties of P/M Processed Ti-Ni-Cu Shape Memory Alloys</td>
<td>225</td>
</tr>
<tr>
<td>A. Terayama¹, H. Kyogoku¹; (1) Hiroshima Prefectural Technology Research Institute, Kure, Japan; (2) Kinki University, Higashihiroshima, Japan</td>
<td></td>
</tr>
<tr>
<td>The Effect of Variance in Input Parameters for Nitinol Constitutive Models in FEA</td>
<td>231</td>
</tr>
<tr>
<td>E. McCummiskey, W.M. Dempster, D.H. Nash; University of Strathclyde, Glasgow, UK</td>
<td></td>
</tr>
<tr>
<td>NiTi SMA Wires Subjected to Rotary Bending Fatigue Tests</td>
<td>239</td>
</tr>
<tr>
<td>T.C.U. Matheus¹, W.M.M. Menezes¹, O.D. Rigo¹, L.K. Kabayama¹, J. Otubo¹, H. de Oliveira Magalhaes², C.S. da Costa Viana²; (1) Instituto Tecnologico de Aeronautica, S. Paulo, Brazil; (2) FATEC-Expoente, S. Paulo, Brazil; (3) Universidade Federal Fluminense, Rio de Janeiro, Brazil</td>
<td></td>
</tr>
</tbody>
</table>
Character Features of Spherical Segments Fracture from Shape Memory Alloy ... 247
M.A. Khusainov1, A.B. Bondarev2, V.A. Andreev2; (1) Yaroslav the Wise Novgorod State University, St.-Petersburgskaya, Russia; (2) Industrial Center "MATEKS", Moscow, Russia

Thermoelastic Phase Transformation in TiNi Alloys by Instrumented Nanoindentation ... 257
M. Arciniegas1, J.M. Manero1, F.J. Gil1, J. Peña1; (1) Technical University of Catalonia, Barcelona, Spain; (2) Escola Superior en Disseny, Barcelona, Spain

CORROSION, BIOCOMPATIBILITY, AND SURFACE PROCESSING

Investigation on the Behavior of Surface Oxide Layers on Pseudo Elastic Ni-Ti Wire during and after Deformation ... 265
A. Undisz, M. Rettenmayr, F. Schrempel, W. Wesch; Friedrich-Schiller-University, Jena, Germany

Effect of Long-Term Immersion on the Pitting Corrosion Resistance of Nitinol .. 271
A. Nissan1, L.E. Eiselstein1, D. Steffey1, N. Corlett1; (1) Exponent Failure Analysis Associates, Inc., Menlo Park, CA, USA; (2) Exponent International Ltd., Harrogate, UK

Toward an Acceptance Criterion for the Corrosion Resistance of Medical Devices: A Statistical Study of the Pitting Susceptibility of Nitinol ... 279
L.E. Eiselstein1, D. Steffey1, A. Nissan1, N. Corlett1; (1) Exponent Failure Analysis Associates, Inc., Menlo Park, CA, USA; (2) Exponent International Limited, Harrogate, UK

Nitinol Surface Properties and the Biological Responses .. 291
S. Shabalovskaya1, J. Van Humbeeck1, G. Rondelli2, J. Anderegg3; (1) Katholieke University, Leuven, Belgium; (2) Institute of Energy and Interphases, Milano, Italy; (3) Iowa State University, Ames, IA, USA

Corrosion Behavior of Cardiovascular Stent Materials .. 299
N. Munroe, W. Haider, K.-H. Wu, A. Datye; Florida International University, Miami, FL, USA

Corrosion Behaviour of Electropolished Implant Alloys .. 307
N. Munroe, W. Haider, A. Datye, K.-H. Wu; Florida International University, Miami, FL, USA

THIN FILMS—PROCESSING AND APPLICATIONS

Microstructure and Shape Memory Behavior of Annealed Ti88,5Ni18,0Cu33,5 Thin Film .. 315
A. Ishida, M. Sato, K. Ogawa; National Institute for Materials Science, Tsukuba, Ibaraki, Japan

Influence of Precipitates on Martensite Structure in Ti-Rich Ti-Ni-Cu Thin Films ... 323
X.L. Meng, M. Sato, A. Ishida; National Institute for Materials Science, Ibaraki, Japan

Batch Fabrication of SMA-Actuated Polymer Microvalves ... 329
M. Kohl1, T. Grund1, W. Pfleging1, R. Guerre2, M. Despont2; (1) Forschungszentrum Karlsruhe, Karlsruhe, Germany; (2) IBM Research GmbH, Zuerich, Switzerland
Fabrication of Superelastic Ti-Ni Microtubes by Sputter-Deposition Method ..337
P.J.S. Buenconsejo, H.Y. Kim, S. Miyazaki; University of Tsukuba, Ibaraki, Japan

SMA Micro Pump Chip to Flow Liquids and Gases ..343
K. Ikuta, T. Hasegawa, T. Adachi; Nagoya University, Nagoya, Japan

SMA Micro Switching Valve Chip for Biochemical IC Family ..351
K. Ikuta, T. Hasegawa, T. Adachi; Nagoya University, Nagoya, Japan

ENGINEERING APPLICATIONS—DESIGN AND PRODUCTS

Development of Reciprocating Heat Engine Using Shape Memory Alloy—Ratchet Type Drive System with One-Way Clutch ...359
K. Kaneko, K. Enomoto; Tokyo University of Science, Tokyo, Japan

Superelastic Electrode for Secondary Battery Using Ti-Ni Alloys ..369
T.-H. Nam, H.-S. Kim, K.-W. Bae, K.-W. Kim, H.-J. Ahn, K. Cho; Gyeongsang National University, Gyeongnam, Korea

Vibration Suppression of a Single-Degree-of-Freedom Structure by Using Shape Memory Alloy Springs ..377
K. Shingu, Y. Aoki, T. Irie, K. Hiratsuka, M. Yukawa; Nihon University, Funabashi, Chiba, Japan

Ti-Ni Shape Memory Alloys Precision Casting Products and Its Process ..387
Y. Yoshimi1, K. Kitamura1, M. Tokuda1, T. Inaba2, T. Asai3, Y. Watanbe4; (1) Yoshimi Inc., Obu, Aichi, Japan; (2)Mie University, Tsu, Mie, Japan; (3)Nagano National College of Technology, Nagano, Japan; (4) Toyo Seiko Co., Ltd., Yatomi, Japan

Solar Paddle Actuators for Small Satellites Using Shape Memory Alloy ..397
T. Iwata1, H. Murakami1, A. Ogawa2; (1) National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan; (2) Actment Co., Ltd., Saitama, Japan

Smartflex NiTi Wires for Shape Memory Actuators ...405
A. Coda, F. Butera, G. Vergani, L. Fumagalli, L. Toia; SAES Getters S.p.A., Lainate, Italy

Smart Vortex Generator for Aircraft ..413
T. Ikeda1, T. Ueda1, S. Masuda2; (1) Nagoya University, Nagoya, Japan; (2) IHI Corporation, Yokohama, Japan

Development of Functional Fluid Using Shape Memory Alloy ..421
I. Kataoka, K. Yoshida; Osaka University, Osaka, Japan

Position Control Characteristics of Shape Memory Alloy Actuator Using Resistance Feedback Control Method ..435
Y. Takeda1, T. Yamamoto2, Y. Kudo2, T. Sakuma2; (1) TAKE R&D, Shizuoka, Japan; (2) Oita University, Oita, Japan

Combinations and Applications of Bias Method ...443
T. Ishii; Sogo Spring Mfg. Co., Ltd., Kanagawa, Japan

NiTi-Based Damping of Long Overhanging Tools in Machining Processes ..447
D. Biermann, K. Weinert, F. Kahleyß; Technische Universität Dortmund, Dortmund, Germany
Design Diagram for Linear SMA Actuators Integrated in a
Morphing Wing Structure ...455
T. Georges, V. Brailovski, D. Coutu, P. Terriault; École de technologie supérieure,
Montreal, Quebec, Canada

Functional Anisotropic Shape Memory Alloy Fiber and
Differential Servo Actuator ...463
D. Homma, S. Uemura, F. Nakazawa; Toki Corporation, Tokyo, Japan

MEDICAL APPLICATIONS—DEVICE, MANUFACTURING AND TESTING

Ultrasonic Fatigue Behavior Of Nickel-Titanium
Endodontic Instruments under Flexural Conditions473
H.M. Zhou1, Q.F. Li1, L. Li1, Y.F. Zheng2; (1) Harbin Engineering University, Harbin, China;
(2) Peking University, Beijing, China

Bird’s-Eye View of SMA Applications in Japan for
Less Invasive Medical Devices ..481
T. Kawaba; Qualified Medical Device Information Inc., Saitama, Japan

A Numerical Study of a Helical Nitinol Stent489

In-vitro Testing of a New Superelastic Sternum Closure Component497
Y. Baril1, V. Brailovski1, M. Chartrand1, P. Terriault1, R. Curtier2;
(1) École de technologie supérieure, Montreal, Quebec, Canada; (2) Montreal Heart Institute,
Montreal, Quebec, Canada

Superelastic Ti-Ni Optical Frame ...507
Y. Masunaga, K. Murata; Masunaga Optical Mfg. Co., Ltd, Fukui, Japan

Design of an Origami Stent Graft ...513
J. Eaton-Evans2, Z. You1, A. Darbyshire2, R. Bakhshi2, A.M. Seifalian2;
(1) University of Oxford, Oxford, UK; (2) University College London, London, UK

II. NI-FREE TI-BASED SHAPE MEMORY/SUPERELASTIC ALLOYS

Effect of Nitrogen Addition on Shape Memory Properties of Ti-Nb-Zr-Ta Alloy521
M. Tahara1, H.Y. Kim1, T. Inamura2, H. Hosoda2, S. Miyazaki1;
(1) University of Tsukuba, Ibaraki, Japan; (2) Tokyo Institute of Technology, Kanagawa, Japan

Effect of Nb Content on Deformation and Recrystallization Textures of
Ti-18Zr-Nb Alloys ..527
H. Tobe1, H.Y. Kim1, T. Inamura2, H. Hosoda2, S. Miyazaki1;
(1) University of Tsukuba, Ibaraki, Japan; (2) Tokyo Institute of Technology, Kanagawa, Japan

Texture in Cold-Drawn Wire of Ti-Nb-Al Shape Memory Alloy533
I. Kubota1, T. Inamura1, K. Wakashima1, H. Hosoda1, H.Y. Kim1, S. Miyazaki2;
(1) Tokyo Institute of Technology, Yokohama, Japan; (2) University of Tsukuba, Ibaraki, Japan

Superelastic Behavior of Ti-Nb-Mo-Al Alloy ..537
T. Yamamoto1, Y. Matsunaga1, T. Sakuma1, H. Hosoda2, S. Miyazaki3;
(1) Oita University, Oita, Japan; (2) Tokyo Institute of Technology, Yokohama, Japan;
(3) University of Tsukuba, Ibaraki, Japan
Study of New Ni-Free Ti Alloys for Applications in the Implant Field ...545
M. Arciniegas¹, J.M. Manero¹, F.J. Gil¹, J. Peña¹, M. González², J.C. Paniagua³;
(1) Technical University of Catalonia, Barcelona, Spain; (2) Escola Superior en Disseny,
Barcelona, Spain; (3) University of Barcelona, Barcelona, Spain

Phase Constitution and Mechanical Properties of Ti-Sn Alloys Containing
3D Transition Metal Elements ..553
K. Kasuya¹, T. Inamura¹, K. Wakashima¹, H. Hosoda¹, S. Miyazaki³;
(1) Tokyo Institute of Technology, Yokohama, Japan; (2) University of Tsukuba, Ibaraki, Japan

Phase Constitution and Mechanical Properties of
Near-Eutectoid Ti-Au Alloys Containing Transition Metal Elements ..559
T. Ishigaki¹, Y. Matsuki¹, T. Inamura¹, K. Wakashima¹, H. Hosoda¹, S. Miyazaki³;
(1) Tokyo Institute of Technology, Yokohama, Japan; (2) University of Tsukuba, Ibaraki, Japan

Mechanical Properties of Ti-Mo Alloys Containing 3D Transition Metal Elements565
H. Saito¹, T. Inamura¹, K. Wakashima¹, H. Hosoda¹, S. Miyazaki³;
(1) Tokyo Institute of Technology, Yokohama, Japan; (2) University of Tsukuba, Ibaraki, Japan

Shape Memory Properties of TiAu Base Alloys and Composites ...571
Y. Okimori¹, Y. Tsugane¹, T. Inamura¹, K. Wakashima¹, H. Hosoda¹, S. Miyazaki³;
(1) Tokyo Institute of Technology, Yokohama, Japan; (2) University of Tsukuba, Ibaraki, Japan

III. MAGNETIC SHAPE MEMORY ALLOYS

Stress-Temperature Phase Diagram of Single Crystal of
Ferromagnetic Shape Memory Alloy Ni₂MnGa ..577
H. Kushida, K. Hata, T. Fukuda, T. Terai, T. Kakeshita; Osaka University, Osaka, Japan

On Relations between the Transformation Temperatures, Stresses, Pressures, and
Magnetic Fields in Shape Memory Alloys ..583
D.L. Beke¹, L. Daróczí¹, Z. Palánki¹, C. Lexcellent²; (1) University of Debrecen,
Debrecen, Hungary; (2)Université de Franche-Comté, Besançon, France

Mechanical Properties of Fe-Pd Ferromagnetic Shape Memory Alloy Thin Films
Prepared by Dual Source DC Sputtering ..591
S. Inoue¹, T. Namazu¹, T. Fujimoto¹, K. Koterazawa¹, K. Inoue³;
(1) University of Hyogo, Hyogo, Japan; (2) University of Washington, Seattle, WA, USA

TEM Observation of Domain Wall Pinning in a Ni₂Mn(Al, Ga)
Ferromagnetic Shape Memory Alloy ..599
T. Yano, Y. Murakami, D. Shindo, R. Kainuma; Tohoku University, Sendai, Japan

Investigation of Barkhausen-Noise in Ni₂MnGa ...607
L. Daróczí¹, A. Bükk-Deme¹, Z. Balogh¹, L. Harasztosi¹, Z. Erdélyi¹,
D.L. Beke¹, T.A. Lograsso², D.L. Schlager²; (1) University of Debrecen, Debrecen, Hungary;
(2) Iowa State University, Ames, IA, USA

IV. OTHER SHAPE MEMORY/SUPERELASTIC ALLOYS

Surface Treatment Affects Fatigue Life of Copper-Based
Single Crystal Shape Memory Alloys ...615
A.D. Johnson, J.C. Diaz; TiNi Alloy Company, San Leandro, CA, USA
Biocompatibility of Copper-Based Single Crystal Shape Memory Alloys625
A.D. Johnson; TiNi Alloy Company, San Leandro, CA, USA

Stainless SMA with Damping Capacity for Aeronautical Structures631
J. Otubo, A. Rosato, Jr., C. de Moura Neto; Instituto Tecnologico de Aeronautica,
Sao Paulo, Brazil

Absorption of Seismic Vibration by Fe-Mn-Si-Based Shape Memory Alloys and TRIP/TWIP Steels637
T. Sawaguchi, K. Ogawa, T. Kikuchi; National Institute for Materials Science, Ibaraki, Japan

Influence of Al Concentration on Deformation Behavior and Fracture Mode of Fe-30Mn-6(Si, Al) Alloys645
K. Ogawa1, T. Sawaguchi1, T. Kikuchi1, M. Koyama2, M. Murakami2;
(1) National Institute for Materials Science, Ibaraki, Japan; (2) Shibaura Institute of Technology,
Tokyo, Japan

Shape Memory Characteristics of Fe-30Mn-5Si-1Al and Fe-28Mn-5Si-1Al-5Cr Alloys ..653
M. Koyama1, M. Murakami1, K. Ogawa2, T. Kikuchi2, S. Sawaguchi2;
(1) Shibaura Institute of Technology, Tokyo, Japan; (2) National Institute for Materials Science,
Ibaraki, Japan

High-Temperature Pseudoelasticity of Co49Ni21Ga30 Shape Memory Alloy Single Crystals under Compression659
J. Dadda1, H.J. Maier1, I. Karaman2; (1) University of Paderborn, Paderborn, Germany;
(2) Texas A&M University, College Station, TX, USA

Instability of B2-Type Structure in Iron Doped Ti-Pd Shape Memory Alloys667
M. Todai, K. Wada, M.-S. Choi, T. Fukuda, T. Kakeshita; Osaka University, Osaka, Japan

Superelasticity in Manganese Copper Alloy Single Crystals ..675
H. Kato, K. Sasaki; Hokkaido University, Sapporo, Japan

Electrical Resistivity Recovering with Diffusion in AuCd Martensite683
T. Ohba1, S. Morito1, S. Nakamura2, T. Okayasu2; (1) Shimane University, Matsue, Japan;
(2) Keikyo University, Utsunomiya, Japan

AUTHOR INDEX ..687

SUBJECT INDEX ..691
FOREWORD AND ACKNOWLEDGMENTS

The International Conference on Shape Memory and Superelastic Technologies 2007, SMST-2007, was held December 2–5, 2007 in Tsukuba, Japan. This is the first SMST sponsored by the International Organization on SMST, an affiliate society of ASM International, and organized in a country other than the USA. The SMST-2007, organized by the members of the Association of Shape Memory Alloys (ASMA), built upon the foundation created by previous conferences, at Asilomar in 1994, 1997, 2000, 2003, and 2006, in addition to three previous SMST self-sponsored conferences organized in Belgium in 1999, China in 2001, and Germany in 2004.

This four-day technical and scientific conference was held at the International Congress Center in Tsukuba. Known as “Science City,” it was established as the nation’s largest research and education center. Tsukuba is home to the country’s national testing and research facilities with 19,000 researchers within the city, and over 120 private businesses focusing on research and development. Tsukuba is located 40 km from Narita International Airport and 50 km from Akihabara, Tokyo.

The conference began Sunday evening, December 2 with a Welcome and Opening Remarks at a Welcome Reception. It was followed by three days of sessions, Monday through Wednesday, December 3–5, and a Poster Session on Monday evening, an Exhibitor Reception on Tuesday evening and a Banquet on Wednesday evening. More than 210 people from 23 different countries participated in SMST-2007, presenting 180 talks including 129 oral and 51 poster presentations. The conference focused on the practical engineering and medical aspects of shape memory and superelastic alloys, e.g., alloy development and characterization, engineering and medical applications, mechanical properties, corrosion/biocompatibility/surface processing, modeling/design, and Japanese applications. Since Japan has extensively developed new shape memory alloys as well as many of the engineering and medical applications on the market, attendants found the latest results at the conference. Bringing additional results to the conference from all over the world, attendants had the opportunity to exchange information and ideas leading to their future development on new alloys and applications.
The SMST-2007 would not have been successful without the assistance and cooperation of a great number of people. I would like to acknowledge the support and advice of the Chairs, Organizing Committee, Technical Committee, Advisory Committee, Cooperating Societies, ASM International staffs and Exhibitors. All members are listed on the next page. I, also, would like to greatly thank many attendants who have presented their recent research results and exchanged new information at the conference site in addition to submitting their manuscripts to this volume.

Finally, I would like to thank our generous sponsors who helped to make the conference a great success. Sponsors for SMST-2007 were as follow:

ASM International
The International Organization on SMST
Medical Metalle
SAES Getters
Tsukuba City

Shuichi Miyazaki
SMST-2007 Conference Chairman
General Chair
Shuichi Miyazaki

Vice General Chairs
Tomoyuki Kakeshita
Minoru Nishida
Ichizo Ohkata
Toshio Sakuma
Kiyoshi Yamauchi

Program Chair
Hee Young Kim

Organizing Committee
Tsutomu Inaba
Akira Ishida
Takashi Ishii
Hisao Kamiya
Tsutomu Kato
Takuji Nakahata
Hideo Takaara
Satoshi Takaoka

Technical Program Committee
Tadashi Furuhara
Hideki Hosoda
Tomonari Inamura
Shozo Inoue
Ryosuke Kainuma
Hiroyuki Kato
Hideki Kyogoku
Yoko Mitarai
Yasukazu Murakami
Takuya Ohba
Makoto Ohtsuka
Xiaobing Ren
Takahiro Sawaguchi
Akihiko Suzuki
Toshiharu Suzuki
Tsugio Tadaki
Hisaaki Tobushi
Koichi Tsuchiya
Takayuki Yoneyama

Advisory Committee
Vladimir Brailovski
Wei Cai

Darerl E. Hodgson
Valentina Imbeni
Kiyohito Ishida
Xue-Jun Jin
Manfred Kohl
Mattias Mertmann
Michael Mitchell
Gregory B. Olson
Kazuhiro Otsuka
Thomas Passek
Alan Pelton
James L. Proft
Sergey D. Prokoshkin
Avadh B. Saxena
Ken’ichi Shimizu
Quingping Sun
Yuichi Suzuki
Masataka Tokuda
Jan Van Humbeeck
Ming Wu
Shyi-Kaan Wu
L’Hocine Yahia

Cooperating Societies
Association of Shape Memory Alloys
The Japan Institute of Metals
Japan Society of Mechanical Engineering
National Institute for Materials Science
University of Tsukuba

ASM International Staff
Kristin Minihan
Anya Hodgson
Thomas Passek

Exhibitors
ASMA, Association of Shape Memory Alloys
AUTOSPLICE
Bose Corporation, Electro Force Systems Group
Johnson Matthey
ROFIN/Bassel Rasertech
SAES Getters
Ulbrich Stainless Steels and Special Metals, Inc.
These proceedings are divided into four sections according to the types of shape memory alloys: TiNi-based alloys; Ni-free Ti-based alloys; magnetic alloys; and other alloys. The first section is entitled *TiNi-Based Shape Memory/Superelastic Alloys* including 64 papers and divided into six subsections according to the types of specific topics: a) Processing and Microstructure; b) Mechanical Properties—Deformation, Fatigue, and Fracture; c) Corrosion, Biocompatibility, and Surface Processing; d) Thin Films—Processing, and Applications; e) Engineering Applications—Design and Products; and f) Medical Applications—Device, Manufacturing, and Testing. These subsections include 18, 15, 6, 6, 13, and 6 papers, respectively.

The second section, with 9 papers, is dedicated to the new field of *Ni-Free Ti-Based Shape Memory Alloys*. These alloys are considered as important candidate materials for shape memory/superelastic biomedical applications. This subject is first addressed by an SMST proceedings as its own chapter, reflecting increasing interest in the materials. The materials have been developed and investigated extensively with strong intention of developing new biomedical Ti-based shape-memory/superelastic alloys since 2001, especially in Japan, and their researches are spreading all over the world.

Magnetic Shape Memory Alloys are included in the third section with 5 papers. The number of researches on these materials has been increasing in the world, because their shape memory effect is driven by magnetic field instead of temperature variation suggesting fast actuation. Since the present researches of these materials are mostly on a basic research stage, a large number of presentations at SMST will be expected in the future when these materials will be close to the application development stage.

The fourth section, with 10 papers, is arranged for *Other Shape Memory/Superelastic Alloys* which include Cu-based, Fe-based, and other alloys. Among these alloys, Cu-based and Fe-based alloys have been considered as alternative materials for applications. It is noteworthy that Fe-based alloys were recently used for application products for the first time by a Japanese company; the products were only shown at the exhibition session.
This volume contains a total number of 88 papers. They have been carefully reviewed and edited by the editor, many independent reviewers and authors themselves. The elaborate works of the reviewers and authors are greatly appreciated. Lastly, great appreciation should be dedicated to Associate Professor Hee Young Kim, who has played important rolls in arranging Conference Program, reviewing manuscripts and editing proceedings.

Shuichi Miyazaki
SMST-2007 Editor