Expanding Thermal Spray Performance to New Markets and Applications
Proceedings of the 2009 International Thermal Spray Conference
May 4–7, 2009 • Las Vegas, Nevada, USA

Edited by
Basil R. Marple • Margaret M. Hyland • Yuk-Chiu Lau • Chang-Jiu Li • Rogerio S. Lima • Ghislain Montavon

Visit the new TSS Community Web site:
TSS.asminternational.org
Worldwide home of the ASM Thermal Spray Society
Contents

Scroll to the title and select a Blue link to open a paper. After viewing the paper, use the bookmarks to the left to return to the beginning of the Table of Contents.

Ceramics, TBCs, SOFCs, and EBCs

Atmospheric Plasma Spraying (APS) Low-Temperature Cathode Materials for Solid Oxide Fuel Cells (SOFCs) ... 1

J. Harris, O. Kesler; University of Toronto, Toronto, ON, Canada

Inelastic Deformation of Freestanding Plasma-Sprayed Thermal Barrier Coatings .. 7

M. Arai1, X.H.Wu2, K. Fujimoto3; (1) Central Research Institute of Electric Power Industry, Tokyo, Japan, (2) Xi'an JiaoTong University, Xi'an, China, (3) University of Tokyo, Tokyo, Japan

Microstructures and Electrochemical Behavior of LSM Cathode with a Structured Electrolyte Modified by Flame Spraying .. 12

X.-M. Wang, C.-J. Li, C.-X. Li, G.-J. Yang; Xi'an Jiaotong University, Xi'an, Shaanxi, China

Thermomechanical Evaluation and Thermal Expansion Behavior of Plasma-Sprayed Thermal Barrier Coatings .. 18

K. Takagi1, D. Kudo1, A. Kawasaki1, Y. Harada2, M. Okazaki3; (1) Tohoku University, Sendai, Miyagi, Japan, (2) Tocalo Co. Ltd., Akashi, Hyogo, Japan, (3) Nagaoka University of Technology, Nagaoka, Nigata, Japan

Fabrication and Property of MCrAlY/Nanostructured YSZ Thermal Barrier Coating 23

J. Zhang, N. Xu, W.L. Hou, J.Q. Wang, M.X. Quan, X.C. Chang; Institute of Metal Research, Shenyang, China

Effect of High Temperature Calcination on the Phase Compositions of Nanocrystalline Zirconia Powder and Coating ... 28

X.L. Jiang1, C.B. Liu1, L.S. Yu1, M. Liu2, Z.H. Zhu2; (1) Central South University, Changsha, Hunan, China, (2) Guangzhou Research Institute of Non-Ferrous Metals, Guangzhou, Guangdong, China

Microstructure and Thermal Cycling Behavior of Atmospheric Plasma Sprayed Thermal Barrier Coatings with High Segmentation Crack Densities 34

M. Karger, R. Vaßen, D. Stöver; Forschungszentrum Jülich GmbH, Jülich, Germany

Study of Ceramic Coatings as a Novel Optical Imaging Tracking Material Using Plasma Spray Method ... 40

W.H. Liao1, W.T. Hsiao2, F.S. Shieu1, C.Y. Su2, M.S. Leu3; (1) National Chung Hsing University, Taichung, Taiwan, (2) National Taipei University of Technology, Taipei, (3) Industrial Technology Research Institute, Hsinchu, Taiwan

Microstructure-Based Prediction of Properties for Thermal Barrier Coatings 46

F. Qunbo, W. Fuchi, W. Lu, M. Zhuang; Beijing Institute of Technology, Beijing, China
Influence of Microstructure on Thermal Conductivity of Plasma-Sprayed YSZ Coating ... 51
Y. Li, C.-J. Li, Y.-Z. Xing, G.-J. Yang, C.-X. Li; Xi’an Jiaotong University, Xi’an, Shaanxi, China

Influence of Plasma-Sprayed Processes on La_{10}(SiO_{4})_{6}O_{3} Electrolyte Coatings ... 56
W. Gao¹, F. Lapostolle², H.-L. Liao², C. Coddet²; (1) Jilin University, Changchun, China, (2) University of Technology of Belfort-Montbéliard, Belfort, France

Preparation and Characterization of Solid Electrolyte for IT-SOFC Applications Using Atmospheric Plasma Spray Technique: An Inside Understanding by Pas Analysis and Molecular Dynamic Simulation ... 60
K.L. Tung, K.S. Chang, C.H. Kang, Y.C. Chiang; Chung Yuan Christain University, Chungli, Taiwan

Atmospheric Plasma Spraying of High Melting Temperature Complex Perovskites for TBC Application .. 65
M.O. Jarligo, D.E. Mack, G. Mauer, R. Vaßen, D. Stöver; Forschungszentrum Jülich GmbH, Jülich, Germany

Influence of Composition of TGO on the Thermal Shock Lifetime of Thermal Barrier Coatings with Cold-Sprayed MCrAlTaY Bond Coat ... 71
Y. Li, C.-J. Li, Q. Zhang, G.-J. Yang, C.-X. Li; Xi’an Jiaotong University, Xi’an, Shaanxi, China

Failure of Thermal Barrier Coatings Subjected to CMAS Attack ... 77
L. Li, N. Hitchman, J. Knapp; Praxair Surface Technologies, Inc. Indianapolis, IN, USA

Flame Spraying of Mullite/ZrO_{2} Powders .. 83
E. García, C. Cano, M.I. Osendi, P. Miranzo; Institute of Ceramics and Glass, Madrid, Spain

Degradation of Thermal Barrier Coatings by Fuel Impurities and CMAS ... 89
Y.H. Sohn, P. Mohan, P. Schelling, D. Nguyen; University of Central Florida, Orlando, FL, USA

Mullite Coatings Produced by APS and SPS: Effect of Powder Morphology and Spray Processing on the Microstructure, Crystallinity and Mechanical Properties ... 97
Y. Wang¹, R.S. Lima¹, C. Moreau¹, E. García², J. Guimaraes², P. Miranzo², M.I. Osendi²; (1) National Research Council of Canada, Boucherville, QC, Canada, (2) Instituto de Ceramica Y Vidrio, Madrid, Spain

Microstructure and Electrical Properties of Coatings of the Cr_{2}O_{3}-TiO_{2} System ... 103
L.-M. Berger¹, C.C. Stahr¹, S. Saaro¹, S. Thiele²; (1) Fraunhofer-Institute for Material and Beam Technology, Dresden, Germany, (2) Fraunhofer-Institute for Ceramic Technologies and Systems, Dresden, Germany

Plasma Spraying of Lanthanum Silicate Electrolytes for Intermediate Temperature Solid Oxide Fuel Cells (ITSOFCs) ... 109
S. Dru¹, E. Meillot¹, K. Wittmann-Teneze¹, M.-L. Saboungi², R. Benoit²; (1) Le Ripault, Monts, France, (2) CRMD Research Center, Orleans, France

Mullite and Mullite/ZrO_{2}-7wt\%Y_{2}O_{3} Powders for Thermal Spraying of Environmental Barrier Coatings ... 115
E. García¹, J. Guimarães¹, P. Miranzo¹, M.I. Osendi¹, Y. Wang², R.S. Lima², C. Moreau²; (1) Institute of Ceramics and Glass, Madrid, Spain, (2) National Research Council of Canada, Boucherville, QC, Canada
Gastight Yttria-Partially Stabilized Zirconia Layers Manufactured by Suspension Plasma Spraying for SOFC Electrolyte Functional Layers ... 120
E. Brousse¹, G. Montavon¹, A. Denoirjean¹, P. Fauchais¹, K. Wittmann-Teneze²;
(1) University of Limoges, Limoges, France, (2) Centre du Ripault, Monts, France

Plasma Sprayed Metal Supported SOFCs having Enhanced Performance and Durability 126
A. Ansar, Z. Ilhan, J. Arnold; German Aerospace Center, Stuttgart, Germany

Investigation of Plasma Sprayed and Constrained-Sintered Zirconia Based Electrolytes 131
C. Christenn, S.A. Ansar; German Aerospace Center, Stuttgart, Germany

Suspension and Solution Thermal Spray

Latest Developments in Suspension and Liquid Precursor Thermal Spraying 136
P. Fauchais, G. Montavon; University of Limoges, Limoges, France

High Velocity Suspension Flame Spraying (HVSFS):
Process Development and Industrial Applications ... 150
J. Rauch, N. Stiegler, A. Killinger, R. Gadow; University of Stuttgart, Germany

Suspension Plasma Sprayed Titanium Oxide and Hydroxyapatite Coatings 156
R. Jaworski¹, L. Pawlowski¹, C. Pierlot¹, F. Roudet², S. Kozerski³, F. Petit⁴;
(1) ENSCL, Villeneuve d’Ascq, France, (2) LML, University of Lille1,
Villeneuve d’Ascq, France, (3) Wroclaw University of Technology, Poland,
(4) Belgian Ceramic Research Centre, Mons, Belgium

Suspension Plasma Spraying: Process Development and Applications 162
R. Vaßen, H. Kaßner, G. Mauer, D. Stöver; Forschungszentrum Jülich GmbH, Jülich, Germany

Microstructures and Functional Properties of Al₂O₃ and TiO₂ Suspension Sprayed Coatings: An Overview ... 168
F.-L. Toma, L.-M. Berger, C.C. Stahr, T. Naumann, S. Langner; Fraunhofer Institute for Material and Beam Technology, Dresden, Germany

Al₂O₃ – ZrO₂ Finely Structured Multilayer Architectures from Suspension Plasma Spraying .. 174
O. Tingaud, G. Montavon, A. Denoirjean, J.-F. Coudert, V. Rat, P. Fauchais;
University of Limoges, Limoges, France

Elaboration of Porous Ni/8YSZ Cermet Layers by Several SPS and SPPS Routes 181
P. Michaux, G. Montavon, A. Grimaud, A. Denoirjean, P. Fauchais;
University of Limoges, Limoges, France

In-situ Particle Behavior of Cast Iron Powder by Suspension Plasma Spraying 187
C. Tekmen, K. Iwata, Y. Tsunekawa, M. Okumiya; Toyota Technological Institute, Nagoya, Japan

F. Ben-Ettouil, A. Denoirjean, A. Grimaud, G. Montavon, P. Fauchais;
University of Limoges, Limoges, France
Basic Principles to Obtain Oxide Ceramic Coating Systems with Reduced Sliding Wear by Suspension Plasma Spraying .. 200
M. Erne, Fr.-W. Bach, K. Möhwald, D. Kolar; Leibniz Universität Hannover, Hanover, Germany

Deposition of TiO₂ Coatings: Comparison between High Velocity Suspension Flame Spraying (HVSFS), Atmospheric Plasma Spraying, and HVOF-Spraying 207
G. Bolelli¹, V. Cannillo¹, L. Lusvarghi¹, R. Gadow², A. Killinger², J. Rauch²,
E. Bemporad³, M. Sebastiani³; (1) University of Modena and Reggio Emilia, Modena, Italy,
(2) Universität Stuttgart, Stuttgart, Germany, (3) University of Rome – 3, Rome, Italy

Dry Sliding Behavior of Sub-Micrometer-Sized Suspension Plasma Sprayed Ceramic Oxide Coatings .. 213
G. Darut, F. Ben-Ettouil, A. Denoirjean, G. Montavon, H. Ageorges, P. Fauchais;
University of Limoges, Limoges, France

Cold Spray

WC-Based Coating Production by the Pulsed Gas Dynamic Spraying Process: Coatings and Process Analysis .. 219
M. Yandouzi, B. Jodoin; University of Ottawa, Ottawa, ON, Canada

Properties of Copper Coatings Obtained by Cold Gas Dynamic Spraying Using Helium: Influence of the Oxide Content of the Powder .. 225
T. Kairet¹, S. Godet¹, M. Degrez¹, S. Alexandre²; (1) Université Libre de Bruxelles, Belgium
(2) CEA, Le Ripault, France

Effects of Gas Temperature, Gas Pressure, and Particle Characteristics on Cold Sprayed Pure Titanium Coatings .. 231
W. Wong¹, A. Rezaeian¹, S. Yue¹, E. Irissou², J.-G. Legoux²; (1) McGill University,
Montreal, QC, Canada, (2) National Research Council Canada, Boucherville, QC, Canada

Effects of Cold Spray Process Gas Temperature on CP Titanium Structure .. 237
S. Gulizia, B. Tiganis, M.Z. Jahedi, N. Wright, T. Gengenbach, C. MacRae;
CSIRO, Clayton, Victoria, Australia

Microstructural Development in Cold Sprayed Copper .. 243
P.C. King, S.H. Zahiri, M. Jahedi; CSIRO, Clayton, Victoria, Australia

Formation of Diamond/NiCrAl Cermet Coating through Cold Spray .. 249
X.-K. Suo, C.-J. Li, G.-J. Yang, C.-X. Li; Xi’an Jiaotong University, Xi’an, Shaanxi, China

Improved Deposition Characteristics of Diamond Enhanced by Plastically Deformed Nickel Layer in Kinetic Sprayed Bronze/Diamond Composite Coating .. 255
H. Na¹, G. Bae¹, S. Yoon¹, C. Lee¹, H.J. Kim²; (1) Hanyang University, Seongdong-Ku,
Seoul, Korea, (2) Research Institute of Industrial Science & Technology, Pohang, Korea

Kinetic Metallization™ – A Repair Process for Damaged IVD-Al Coatings, Mg, and Al Alloy Components .. 261
R. Tapphorn, J. Henness, H. Gabel; Inovati, Santa Barbara, CA, USA

Development of High Temperature Gas Heater in the Cold Spray Coating System .. 267
H. Fukanuma, R. Huang; Plasma Giken Co., Ltd., Yorii Town, Saitama, Japan
Deposition Behavior of Copper Particles onto Flat Substrate Surface in Cold Spraying

M. Fukumoto¹, M. Mashiko¹, M. Yamada², E. Yamaguchi³; (1) Toyohashi University of Technology, Toyohashi, Aichi, Japan, (2) Shintobrator, Ltd., Kita-Nagoya, Aichi, Japan

The Influence of Spray Conditions on Deposition Characteristics of Aluminum Coatings in Cold Spraying

R.Z. Huang, H. Fukanuma; Plasma Giken Co., Toshima, Tokyo, Japan

The Effect of Ni Coating for Diamond on the Metal/Diamond Composite Coatings by Cold Spray Deposition

H.J. Kim¹, D.J. Jung¹, C. Lee²; (1) Research Institute of Industrial Science & Technology, Pohang, Korea, (2) Hanyang University, Seoul, Korea

Thermally Enhanced Kinetic Sprayed Titanium Coating: Microstructure and Property Improvement for Potential Applications

G. Bae¹, K. Kang¹, H. Na¹, C. Lee¹, H.J. Kim²; (1) Hanyang University, Seoul, Korea, (2) Research Institute of Industrial Science & Technology, Pohang, Korea

Investigation of Aluminum Coating with Dispersed Nanoscale Quasicrystalline Particles Produced by Cold Spray

M. Hishida¹, M. Fujita¹, K. Sakaki²; (1) Honda R&D Co., Ltd., Haga-gun, Tochigi, Japan, (2) Shinsyu University, Nagano City, Nagano, Japan

Effects of Gas Pressure of Cold Spray on the Formation of Al Based Intermetallic Compound

H. Lee, H. Shin, K. Ko; Ajou University, Suwon, Republic of Korea

Kinetic Metallization™ – Coating Development System

R. Tapphorn, H. Gabel, J. Henness; Inovati, Santa Barbara, CA, USA

Structure and Corrosion Behavior of Cold-Sprayed Tantalum Coatings

H. Koivuluoto¹, P. Vuoristo¹, J. Näkki²; (1) Tampere University of Technology, Tampere, Finland, (2) Technology Centre KETEK Oy, Kokkola, Finland

TEM Microstructural Investigation of MCrAlY Coatings Manufactured by Cold Gas Dynamic Spraying

P. Richer¹, M. Yandouzi², B. Jodoin¹, A. Zúñiga²; (1) University of Ottawa, Ottawa, ON, Canada, (2) University of Chile, Santiago, Chile

Fabrication of Cu-MoS₂ Composite Coating by Cold Spraying and Evaluation of Its Property

M. Yamada¹, J. Wakabayashi¹, M. Fukumoto¹, J. Kitamura²; (1) Toyohashi University of Technology, Toyohashi, Aichi, Japan, (2) Fujimi Incorporated, Kakamigahara, Gifu, Japan

Toughening of Cold-Sprayed Nanostructured WC-12Co Deposit through Using Multimodal WC Particles and Annealing

G.-J. Yang, P.-H. Gao, C.-J. Li, C.-X. Li; Xi’an Jiaotong University, Xi’an, Shaanxi, China

Post Treatment of Cold Sprayed Metallic Ti/Al to Achieve Thick Ti₂AlN Coating

C. Tang, S. Gulizia, M. Jahedi, CSIRO Materials Science & Engineering, Melbourne, Australia
Influence of Spray Materials and their Surface Oxidation on the Critical Velocity in Cold Spraying ... 342
C.-J. Li¹, H.-T. Wang¹, Q. Zhang¹, G.-J. Yang¹, W.-Y. Li², H.L. Liao³; (1) Xi’an Jiaotong University, Xi’an, Shaanxi, China, (2) Northwestern Polytechnical University, Xi’an, Shaanxi, China, (3) LERMS-UTBM, Belfort, France

Thermal Stability of Cold Spray Titanium Structures ... 348
M. Jahedi, S.H. Zahiri; CSIRO Light Metals Flagship, Clayton, Australia

Biomedical Coatings

Nano Titania Embedded Hydroxyapatite Coating by Precursor Plasma .. 354
V. Varadaraajian, R. Visveswaran, P.S. Mohanty; University of Michigan, Dearborn, MI, USA

A Study on the Influence of Plasma Deposited HA and TiO₂ Coatings on Fatigue Lives of Low-Carbon Steel Specimens with Respect to Various Powder In-Flight Properties .. 361
J. Cizek¹, K.A. Khor¹, J. Siegi², J. Bensch²; (1) Nanyang Technological University, Singapore, (2) Czech Technical University, Czech Republic

Enhanced Proliferation and Growth of Human Stem Cells on the Surface of HVOF-Sprayed Nano TiO₂-HA Coatings ... 366
R.S. Lima¹, S. Dimitrievska¹, M.N. Bureau¹, B.R. Marple¹, A. Petit², F. Mwale², J. Antoniou²; (1) National Research Council of Canada, Boucherville, QC, Canada, (2) McGill University, Montreal, QC, Canada

Microstructure and Biological Properties of Plasma Sprayed Novel Bioactive Coatings ... 372
X.-Y. Liu, C.-X. Ding; Chinese Academy of Sciences, Shanghai, China

Bactericidal Effects of HVOF-Sprayed Nanostructured TiO₂ on Pseudomonas aeruginosa.... 376
B. Jeffery¹, A. McDonald¹, M. Peppler¹, R.S. Lima²; (1) University of Alberta, Edmonton, AB, Canada, (2) National Research Council of Canada, Boucherville, QC, Canada

Research on Plasma Sprayed High Crystallinity Degree Hydroxyapatite Powder for Biological Coating .. 382
L. Zhenduo; Y. Yueguang; Z. Keli; Z. Jia; Z. Xiaodong; Beijing General Research Institute of Mining & Metallurgy, Beijing, China

Antibacterial Property and Biocompatibility of Plasma Sprayed Hydroxyapatite/Silver Composite Coatings .. 386
X. Zheng, Y. Chen, Y. Xie, H. Ji, L. Huang, C. Ding; Chinese Academy of Sciences, Shanghai, China

Bio-Ceramic Composite Coatings by Cold Spray Technology ... 391
A. Choudhuri¹, P.S. Mohanty¹, J. Karthikeyan²; (1) University of Michigan, Dearborn, MI, USA, (2) ASB Industries, Barberton, OH, USA
Nanomaterials

Enhanced TBC Performance with Nanostructured Bond Coats ... 397
G.E. Kim¹, M. Brochu², A. Moran³, T. Addona⁴; (1) Perpetual Technologies, Inc., Montreal, QC, Canada, (2) McGill University, Montreal, QC, Canada, (3) United States Naval Academy, Annapolis, MD, USA, (4) n-WERKZ, Inc., Montreal, QC, Canada

Properties of Powders, Coatings and Consolidated Components Produced from Nano- and Near-Nano Crystalline Powders ... 403
S. Schroeder¹, C. Melnyk¹, D. Grant¹, R. Gansert², G. Saha³, L. Glenesk³; (1) California Nanotechnologies Inc., Cerritos, CA, USA, (2) Advanced Materials & Technology Services, Inc., Simi Valley, CA, USA, (3) Hyperion Technologies Inc., Calgary, AB, Canada

Phase Formation in Alumina/YSZ Nano-Composite Coating Deposited by Suspension Plasma Spray Process .. 409
F. Tarasi¹, M. Medraj¹, A. Dolatabadi¹, J. Oberste-Berghaus², C. Moreau²; (1) Concordia University, Montreal, QC, Canada, (2) National Research Council of Canada, Boucherville, QC, Canada

Behavior of HVOF WC-10Co4Cr Coatings with Different Carbide Size in Fine and Coarse Particle Abrasion ... 415
A. Ghabchi¹, T. Varis¹, E. Turunen¹, T. Suhonen¹, X. Liu², S.-P. Hannula², A. Ghabchi³; (1) Technical Research Center of Finland, Espoo, Finland, (2) Helsinki University of Technology, Espoo, Finland, (3) SUNY Stony Brook, NY, USA

Nano Particle Embedded High Temperature FGM Coatings by Hybrid Spray Process 420
R.K. Guduru, V. Varadarajaan, A.D. Roche, P.S. Mohanty; The University of Michigan, Dearborn, MI, USA

Modeling and Simulation

Finite Element Analysis of Mechanical Responses of Plasma Sprayed Composite Coatings at the Structural Scale: Effect of the Pore Network Architecture ... 426
C.P. Espinosa, G. Antou, A. Denoirjean, G. Montavon; University of Limoges, Limoges, France

Modeling Aspects of High Velocity Impact of Particles in Cold Spraying by Explicit Finite Element Analysis ... 432
W.-Y. Li¹, C.-J. Li², H. Liao³; (1) Northwestern Polytechnical University, Xi’an, PR China, (2) Xi’an Jiaotong University, Xi’an Shaanxi, PR China, (3) Université de Technologie de Belfort-Montbéliard, Belfort, France

Numerical Approach and Optimization of the Combustion and Injection Techniques in High Velocity Suspension Flame Spraying (HVSFS) ... 442
E. Dongmo, R. Gadow, A. Killinger; University of Stuttgart, Stuttgart, Germany

Numerical Investigation of the Influence of Injection Modes in the Solution Precursor Plasma Spraying ... 450
Y. Shan¹, Z.P. Wei¹, T. Coyle², J. Mostaghimi²; (1) University of Shanghai for Science and Technology, Shanghai, China, (2) University of Toronto, Toronto, ON, Canada
Predict Flexural Rigidity of Sandwich Structures Using
Mechanical Properties of the Constituents .. 456
F. Azarmi1, T.W. Coyle2, J. Mostaghimi2; (1) North Dakota State University, Fargo, ND, USA, (2) University of Toronto, Toronto, ON, Canada

The Role of Substrate Surface Chemistry on Splat Formation during
Plasma Spray Deposition by Experiments and Simulations 462
A.T.T. Tran, M.M. Hyland; The University of Auckland, Auckland, New Zealand

A Study on Arc Instability Phenomena of a Hollow Cathode Plasma Torch
in a Low Pressure Environment .. 469
Jovan Stanisic, Jelena Stanisic, A. George, P.S. Mohanty;
University of Michigan, Dearborn, MI, USA

Numerical Model for Liquid Precursor Break-Up under Plasma Spray Conditions 475
C. Marchand, G. Mariaux, M. Vardelle, A. Vardelle, P. Lefort;
University of Limoges, Limoges, France

Modeling a New Spray Process Combining Plasma and HVOF 481
B. Martinez1, G. Mariaux1, A.Vardelle1, G. Barykin3, M. Parco2; (1) University of Limoges,
Limoges, France, (2) Inasmet Tecnalia, San Sebastian, Spain

Advanced Robot Programming and Coupled Numerical Simulation of
Heat Transfer for Thermal Spraying .. 487
A. Candel, R. Gadow; University of Stuttgart, Stuttgart, Germany

A Deposition Model for Wire Arc Spraying and
Its Computationally Efficient Simulation ... 492
T. Wiederkehr, H. Müller, B. Krebs, M. Abdulgader; Technische Universität Dortmund,
Dortmund, Germany

Applications and Case Studies

Current Status and Future Prospect of Thermal Spray Coating Applications and
Coating Service Market of Job Shops in Japan ... 499
A. Nakahira; Tocalo Co., Ltd., Kobe, Japan

Market Direction and Application Opportunities for T/S Growth in Korea 505
C. Lee; Korea Thermal Spray Society, Hanyang University, Seoul, Korea

Thermal Spraying in India: Status and Prospects ... 511
G. Sundararajan1, Y.R. Mahajan1, S.V. Joshi2;
(1) International Advanced Research Centre for Powder Metallurgy & New Materials,
Hyderabad, India, (2) University of Hyderabad, Hyderabad, India

Industrial and Research Activities in Thermal Spray Technology in the
Nordic Region of Europe .. 517
P. Vuoristo1, P. Nylén2; (1) Tampere University of Technology, Tampere, Finland,
(2) University West, Volvo Aero Corp. Trollhättan, Sweden
Thermal Spraying of FeNiW-Coatings to Improve the Performance of Casting Molds in the Aluminium Industry .. 523
 J. Wilden, S. Jahn, V.E. Drescher; Technische Universität Berlin, Berlin, Germany

Thermal and Kinetic Energy Influence on Diamonds during the Spraying of Diamond-Bronze Abrasive Coatings .. 528
 J. Nebel, E. Vogli, W. Tillmann; TU Dortmund, Dortmund, Germany

Hydraulic Characteristics and Thermal Properties of Metal Foam Sandwich Structure for High Temperature Heat Exchanger Applications 535
 H.R. Salimijazi, J. Mostaghimi, L. Pershin, T.W. Coyle, S. Chandra;
 University of Toronto, Toronto, ON, Canada

 H. Ibe, K. Sato, F. Yuasa, H. Mizuno, J. Kitamura; Fujimi Incorporated,
 Kakamigahara, Gifu, Japan

Microstructure Evolution and Dielectric Properties of Plasma Sprayed BaTiO₃ Coatings 547
 Y.-M. Kim¹, K.-H. Baik¹, K.-S. Park²; (1) Chungnam National University,
 Daejeon, South Korea, (2) Dansung Electron, Ansan, South Korea

Preparation and Ion Diffusion Performance of the Nanoporous TiO₂ Coating through Vacuum Cold Spray ... 551
 G.-J. Yang, C.-J. Li, C.-X. Li, J.-C. Gao, S.-Q. Fan; Xi'an Jiaotong University,
 Xi'an, Shaanxi, China

Development of Kinetic Sprayed Coatings for the Application of Die Soldering Resistance ... 556
 F.F. Khan, G. Bae, K. Kang, S. Kumar, H. Na, J. Kim, C. Lee; Hanyang University,
 Seoul, Republic of Korea

A Case Study of Arc-Spray Tooling Process for Production of Sheet Metal Forming Dies ... 562
 B.-G. Seong¹, J.-H. Kim¹, J.-H. Ahn¹, K.-H. Baik²; (1) RIST, Pohang, South Korea,
 (2) Chungnam National University, Daejeon, South Korea

Structural, Mechanical and Erosion Properties of Plasma Sprayed Yttrium Oxide Coatings by Axial Injection of Fine Powder Slurries for Semiconductor and Flat-Panel-Display Applications .. 567
 J. Kitamura¹, H. Ibe¹, F. Yuasa¹, Z. Tang², A. Burgess³; (1) Fujimi Incorporated,
 Kakamigahara, Gifu, Japan, (2) Northwest Mettech Corp., North Vancouver, BC, Canada

Synthesis and Microstructure Evolution of Nano-Titania Doped Silicon Coatings 573
 N.A. Moroz, H. Umapathy, P. Mohanty; University of Michigan-Dearborn, Dearborn, MI, USA

Glazes Coatings Manufactured by Flame-Spraying onto Thermally Sensitive Substrates: Heat Fluxes Measurements and Some Mechanical Properties 579
 A. Arcondéguy¹, O. Preziosa¹, G. Montavon¹, B. Pateyron¹, A. Grimaud¹, A. Denoirjean¹,
 G. Gasgnier², C. Huguet², M.-P. Planchè³; (1) University of Limoges, France,
 (2) Imerys Tableware France, Aixe-sur-Vienne, France, (3) University of Technology of Belfort-Montbéliard, France

Defect Reduction in Semiconductor through Thermal Spray Technology 585
 H. Wang; Applied Materials Inc., Santa Clara, CA, USA
Direct Write of Antenna Aperstructures and Electronic Interconnects Using Kinetic Metallization™
R.M. Tapphorn, J.A. Henness, H. Gabel; Inovati, Santa Barbara, CA, USA

Effect of Mn on the Formation of Pickups on Thermal Spray Coatings
T.-S. Huang¹, C.-S. Yu¹, J.-R. Wu¹, H.-Y. Liou¹, S.-H. Hsieh¹, T.-K. Huang¹, C.-Y. Su²; (1) China Steel Corporation, Kaohsiung, Taiwan, (2) National Taipei University of Technology, Taipei, Taiwan

Advances of Thermal Sprayed Carbon Roller in Paper Industry
A. Yoshiya¹, S. Shigemura², M. Nagai², M. Yamanaka³; (1) Mitsubishi Plastics, Inc., Chuo-ku, Tokyo, Japan, (2) Tocalo Co. Ltd., Akashi-City, Hyogo, Japan, (3) Sunray Co. Ltd., Shiroy-City, Chiba, Japan

Thermal-Sprayed CFRP Roll with Resistant to Thermal Shock and Wear – For Papermaking Machine
M. Nagai¹, S. Shigemura¹, A. Yoshiya²; (1) Tocalo Company, Ltd., Kobe, Japan, (2) Mitsubishi Plastic, Inc., Tokyo, Japan

Electrically Conductive Plasma Sprayed Oxide-Metal Coatings on Glass Ceramic Substrates
M. Floristán, R. Gadow, A. Killinger; Universität Stuttgart, Stuttgart, Germany

Production of Metallic Coatings on Polymer-Matrix Composites
F. Robitaille¹, M. Yandouzi¹, B. Jodoin¹, S. Hind²; (1) University of Ottawa, ON, Canada, (2) National Research Council Canada, Ottawa, ON, Canada

Plasma Sprayed Ceramic Tray Members for Firing Ceramic Capacitor
O. Yamakawa, H. Nihonmatsu, M. Morisasa, H. Hotta; NGK Adrec Co., Ltd., Mitake-cho, Gifu, Japan

Thermally-Sprayed BaCoTiFe₁₀O₁₉ Layers as Microwave Absorbers
G. Bolelli¹, L. Lusvarghi², D. Lisjak², A. Hujanen³, P. Lintunen³, U. Kanerva³, T. Varis³, M. Bégard⁴, K. Richardt⁴, T. Schläfer⁴, K. Bobzin⁴, M. Pasquale⁵; (1) University of Modena and Reggio Emilia, Modena, Italy, (2) Jozef Stefan Institute, Ljubljana, Slovenia, (3) VTT Research Centre of Finland, Finland, (4) RWTH Aachen University, Aachen, Germany, (5) National Institute of Metrological Research, Torino, Italy

Ultra High Temperature Resistance Coatings for Thermal Protection of Space Vehicles
M. Tului¹, S. Lioniatti¹, G. Marino², R. Gardi², T. Valente³, G. Pulci³; (1) Centro Sviluppo Materiali S.p.A., Rome, Italy, (2) CIRA S.C.p.A., Capua, Italy, (3) Rome University “la Sapienza”, Rome, Italy

Arc Spraying

Optimized Arc Wire Sprayed Fiber Prepregs for Advanced Manufacturing of Metal Matrix Composites (MMC)
M. Silber, R. Gadow; Universität Stuttgart, Stuttgart, Germany
Parameters Affecting Bond Strength and Surface Roughness in Twin Wire Arc Spray Aluminum Coatings ... 644
 M. Watson¹, R. Gansert²; (1) HFW Industries, Buffalo, NY, USA,
 (2) Advanced Materials & Technology Services, Inc., Simi Valley, CA, USA

Production of Particle Reinforced Graded Coatings by Wire Arc Spraying ... 648
 F. van Rodijnen¹, S. Knapp¹, J. Wilden², S. Jahn², V.E. Drescher²; (1) Sulzer Metco OSU
 GmbH, Duisburg, Germany, (2) Technische Universität Berlin, Berlin, Germany

Influence of Spray Gun Moving Direction on Properties of Twin Wire Arc Sprayed Hard Material Based Layers ... 653
 W. Tillmann, E. Vogli, M. Abdulgader, LWT TU Dortmund, Dortmund, Germany

Corrosion Protection

The Effects of Crystallinity and Microstructure on Corrosion Resistance of Atmospheric Plasma Sprayed Cu-Based Bulk Metallic Glass Coating ... 659
 J.H. Kim, S. Kumar, S. Yoon, C. Lee; Hanyang University, Seongdong-Gu, Seoul, Korea

Densifying Method of Corrosion and Wear Resistant Coatings by Using Nanoparticles 663
 S. Armada¹, N. Espallargas², B.G. Tilset³, M. Pilz³, R. Liltvedt⁴, H. Bratland⁵;
 (1) Sintef, Trondheim, Norway, (2) NTNU, Trondheim, Norway, (3) Sintef, Oslo, Norway,
 (4) Scana AMT AS, Vestby, Norway, (5) Servi Cylinderservice AS, Rissa, Norway

Study on Corrosion Behavior of Cold Sprayed Al/α-Al₂O₃ Deposit on AZ91D Alloy ... 669
 T. Xiong, Y. Tao, C. Sun, H. Jin, H. Du, T. Li; Chinese Academy of Sciences, PR China

Corrosion of APS- and HVOF-Sprayed Coatings of the Al₂O₃-TiO₂ System ... 673
 F.-L. Toma¹, C.C. Stahr¹, L.-M. Berger¹, M. Herrmann², D. Deska², G. Michael²;
 (1) Fraunhofer Institute for Material and Beam Technology, Dresden, Germany,
 (2) Fraunhofer Institute for Ceramic Technologies and Systems, Dresden, Germany

High Temperature Corrosion Behavior of Cold Spray Ni-20Cr Coating on Boiler Steel in Molten Salt Environment at 900 °C ... 679
 N. Bala¹, H. Singh¹, S. Prakash³; (1) Baba Banda Singh Bahadur Engineering College,
 Punjab, India, (2) Indian Institute of Technology, Roorkee, Uttrakhand, India

A Comparative Study on Role of Zirconium as Minor Addition in HVOF-Spray Ni-20Cr Coatings in Enhancing Life of Boiler Steel ... 685
 G. Kaushal¹, H. Singh², S. Prakash³; (1) RIMT-Institute of Engineering &Technology,
 Mandi Gobindgarh, Punjab, India, (2) B.B.S.B.Engineering College, Fatehgarh Sahib,
 Punjab, India, (3) Indian Institute of Technology Roorkee, Roorkee, Uttrakhand, India

Corrosion and Erosion Resistance Thermal Spray Coating of Fe-Si Intermetallics ... 691
 T. Okagaito, Y. Fukuda; Kure Research Laboratory, Kure-shi, Hiroshima, Japan

Wire Arc Sprayed High Quality Anti-Corrosion and Wear-Resistant Coatings ... 695
 J. Wilden¹, S. Jahn¹, S. Reich¹, V.E. Drescher¹, R. Durham², M. Schütze²;
 (1) Technische Universität Berlin, Berlin, Germany, (2) DECHHEMA, Frankfurt, Germany
HVOF/HVAF

Statistical Design of HVOF Spray Experiments to Manufacture Superfine Structured Wear Resistant Cr$_3$C$_2$ - 25(Ni 20Cr) Coatings ... 700
 W. Tillmann, E. Vogli, I. Baumann, G. Kopp, C. Weihs;
 Technische Universität Dortmund, Dortmund, Germany

Gas-Dynamic Improvement of HVOF Systems – Development Aspects and Applications 709
 B. Wielage, G. Paczkowski, C. Rupprecht;
 Chemnitz University of Technology, Chemnitz, Germany

High-Velocity Collision of Hot Particles with Solid Substrate under Detonation Spraying: Detonation Splats .. 714
 S.B. Zlobin1, V.Yu. Ulianitsky1, A.A. Shtertser1, I. Smurov2;
 (1) Lavrentyev Institute of Hydrodynamics SB RAS, Novosibirsk, Russia,
 (2) Ecole Nationale d’Ingénieurs de Saint-Etienne, Saint-Etienne, France

Low Cost HVAF for Thermal Spraying of WC-Co ... 718
 I.A. Gorlach; Nelson Mandela Metropolitan University, Port Elizabeth, South Africa

Further Developments in Internal Diameter HVOF Application of WC-CoCr for Hard Chrome Replacement in Critical Applications Such as Landing Gear 722
 G. Matthäus1, J. Henry1, D. Ackermann1, W. Brandl2; (1) Thermico GmbH & Co. KG,
 Dortmund, Germany, (2) FH Gelsenkirchen, Gelsenkirchen, Germany

Plasma Spray

Low Pressure Plasma Spray – Thin Film ® at Sandia National Laboratories 725
 A.C. Hall1, J.F. McCloskey1, D.A. Urrea1, T.J. Roemer2, D.E. Beatty2, N.R. Spinhirne3,
 D.A. Hirschfeld3; (1) Sandia National Laboratories, Albuquerque, NM, USA,
 (2) Ktech Corp., Albuquerque, NM, USA, (3) New Mexico Institute of Mining and
 Technology, Socorro, NM, USA

Vapor Phase Deposition Using LPPS Thin Film ... 729
 K. von Niessen, M. Gindrat, A. Refke; Sulzer Metco AG, Wohlen, Switzerland

LPPS – Thin Film Processes: Overview of Origin and Future Possibilities 737
 E. Muehlberger, P. Meyer; Sulzer Metco, Westbury, NY, USA

Use of Low-Pressure Plasma Spraying Equipment to Produce Thin Films and Thick Coatings Using Liquid and Gaseous Precursors ... 741
 Ph. Guittienne1, Ch. Hollenstein1, J.-L. Dorier1, M. Gindrat2, A. Refke2;
 (1) Ecole Polytechnique Fédérale de Lausanne, Switzerland,
 (2) Sulzer Metco Switzerland AG, Wohlen, Switzerland

Tungsten Thin Films and Nanometer Powder by Low Pressure Plasma Spray 746
 T.N. McKechnie, J.S. O’Dell; Plasma Processes, Inc., Huntsville, AL, USA
The Development and Characterization of Novel Yttria-Stabilized Zirconia Coatings Deposited by Very Low Pressure Plasma Spray by N. Spinhirne1, D. Hirschfeld1, A. Hall2, J. McCloskey2; (1) New Mexico Institute of Mining & Technology, Socorro, NM, USA, (2) Sandia National Laboratories, Albuquerque, NM, USA

A Novel Single Cathode Plasma Column Design for Process Stability and Long Component Life by P.S. Mohanty1, A. George1, L. Pollard2, D. Snyder2; (1) University of Michigan, Dearborn, MI, USA, (2) Progressive Technology Inc., Grand Rapids, MI, USA

Homogenization of Coating Properties in Atmospheric Plasma Spraying – New Results of a DFG (German Research Foundation)-Funded Research Group by K. Bobzin1, N. Bagcivan1, D. Parkot1, I. Petkovic1, J. Schein2, G. Forster2, S. Zimmermann2, J.-L. Marques3, Fr.-W. Bach3, K. Möhwald3, J. Prehm3, K. Hartz3; (1) RWTH Aachen University, Aachen, Germany, (2) Universitaet der Bundeswehr Muenchen, Neubiberg, Germany, (3) Leibniz Universitaet Hannover, Garbsen, Germany

Investigation of Plasma Spraying with Internal Axial Powder Injection by Y. Gao, D-M. Yang, Z.-J. Yan; Dalian Maritime University, Dalian, Liaoning, China

Thin and Dense Ceramic Coatings by Plasma Spraying at Very Low Pressure by G. Mauer, R. Vaßen, D. Stöver; Forschungszentrum Jülich GmbH, Jülich, Germany

Polymers

Microstructure and Mechanical Properties of Flame-Sprayed PEEK Coating Remelted by Laser Process by C. Zhang1, H. Liao1, S. Costil1, C. Coddet1, G. Zhang2; (1) Université de Technologie de Belfort-Montbéliard, Belfort, France, (2) University of Kaiserslautern, Kaiserslautern, Germany

Industrial Applications for Polymer Coatings with Release Properties in Combination with Thermal Spray Coatings by J. McCook, B. Hyllberg; American Roller Company, Union Grove, WI, USA

Study of the Splat-Substrate Interface for a PEEK Coating Plasma-Sprayed onto Aluminum Substrates by J. Wu1, P.R. Munroe1, B. Withy2, M.M. Hyland2; (1) University of New South Wales, Sydney, NSW, Australia, (2) University of Auckland, Auckland, New Zealand

Powder Processing and Emerging Materials

Influence of Powders on Thermal Spray Coating Structures: Recent Developments in Nano or Finely Structured Coatings and Some Safety Issues by P. Fauchais1, G. Montavon1, G. Bertrand2; (1) University of Limoges, Limoges, France, (2) University of Technology of Belfort-Montbéliard, France

Novel NiZn-Ferrite Powders and Coatings for Electromagnetic Applications by D.G. McCartney1, D. Zhang1, J.Y. Yellup1, M. Brühl2, K. Bobzin2, K. Richardt2, T. Talako3, A. Ilyushchanka3; (1) University of Nottingham, Nottingham, UK, (2) Surface Engineering Institute, Aachen, Germany, (3) Powder Metallurgy Institute, Minsk, Belarus
Plasma Spraying of Refractory Cermets by the Water-Stabilized Spray (WSP®) System

P. Ctibor1, P. Chraska1, V. Brozek2, D.-I. Cheong3, S.-H. Yang3; (1) Institute of Plasma Physics ASCR, Prague, Czech Republic, (2) Institute of Chemical Technology, Prague, Czech Republic, (3) Chungnam National University, Daejeon, South Korea

The Influence of Spray Parameters on the Characteristics of Al₂O₃ Particles and Coatings Sprayed by Detonation Spray

B. Sun, H. Fukanuma, N. Ohno; Plasma Giken Co., Ltd, Tokyo, Japan

Metal Clad Cermet Powders: Processing and Properties

A.J. Sherman1, P.G. Engleman2; (1) Powdermet, Inc. Euclid, OH, USA, (2) MesoCoat, Inc., Euclid, Ohio, USA

Preparation of High-Purity Yttria Powders and Coatings

X.-J. Ji, X.-J. Ren, Z.-D. Li, X.-Ch. Huang, W.-Ao Hou; Beijing General Research Institute of Mining and Metallurgy, Beijing, China

Development of Iron Based Wire Feedstocks and Their Processing by Electric Arc Spraying

K. Bobzin, T. Schläfer, L. Zhao, P. Kutschmann; RWTH Aachen University, Aachen, Germany

Microstructure and Properties of New Developed Fe-Cr-C-B Powders for Wear-Protection Purposes

A. Pelz; Corodur Verschleiss-Schutz GmbH, Thale

Process Diagnostics, Sensors, and Control

Particle Image Velocimetry Diagnostics for Suspension Plasma Spraying

O. Marchand1, G. Bertrand1, M.P. Planche1, Y. Bailly2, L. Girardot2; (1) LERMPS-UTBM, Belfort, France, (2) FEMTO-ST/FC-LAB, Belfort, France

Comparison of In-Flight Particle Properties, Splat Formation, and Coating Microstructure for Regular and Nano-YSZ Powders

A. Elsebaei1, J. Heberlein1, M. Elshaer2, A. Farouk2; (1) University of Minnesota, Minneapolis, MN, USA, (2) Zagazig University, Zagazig, Egypt

Estimation of Molten Content of the Spray Stream from Analysis of Experimental Particle Diagnostics

V. Srinivasan, S. Sampath; Stony Brook University, Stony Brook, NY, USA

Influence of Convergent-Divergent Nozzle Design on Plasma Properties and Resultant Coatings

N. Caron, C. Macqueron, E. Meillot; CEA DAM Le Ripault, Monts, France

Improved Thermal Spray Consistency Via Plume Sensors – An Aerospace Perspective

J.P. Sauer1, T. Grijilva2, L. Pouliot3; (1) Sauer Engineering, Cincinnati, OH, USA, (2) Tinker Air Force Base, Oklahoma City, OK, USA, (3) Tecnar Automation Ltee, Saint-Bruno, QC, Canada
Alumina Splat Investigation: Visualization of Impact and Splat / Substrate Interface for Millimetre Sized Drops ... 883
S. Goutier, M. Vardelle, J.C. Labbe, P. Fauchais; SPCTS Laboratory, Limoges, France

Process Measurement and Data Storage Integrated in a Thermal Spray Gun 889
U. Rueedi, A. Kilchenmann; Sulzer Metco AG, Wohlen, Switzerland

Study of In-Flight and Impact Dynamics of Non-Spherical Particles from HVOF Guns 895
S. Kamnis, S. Gu; University of Southampton, Highfield, Southampton, UK

In Situ Monitoring of Particle Consolidation during Low Pressure Cold Spray by Ultrasonic Techniques ... 902
M. Lubrick, S. Titov, V. Leshchynsky, D. Dzhurinskiy, R.Gr. Maev;
University of Windsor, Windsor, ON, Canada

Properties, Characterization, and Testing

Corrosion Behavior and Microstructure of the Al-Al₂O₃ Coatings Produced by Low Pressure Cold Spraying ... 908
J. Villafuerte¹, D. Dzhurinskiy², R. Ramirez², E. Maeva², V. Leshchynsky², R.Gr. Maev²;
(1) Centerline (Windsor) Ltd., Windsor, ON, Canada, (2) University of Windsor,
Windsor, ON, Canada

Non-Linear Mechanical Behavior of Plasma Sprayed Coatings under Mechanical and Thermal Loading ... 914
R. Musalek¹, J. Matejicek¹, M. Vilemova², O. Kovarik³; (1) Institute of Plasma Physics,
Praha, Czech Republic, (2) Center for Thermal Spray Research, Stony Brook University,
Stony Brook, NY, USA, (3) Czech Technical University in Prague, Praha, Czech Republic

Characterization of Complex Thermal Barrier Deposits Pore Microstructures by a Combination of Imaging, Scattering and Intrusion Techniques 920
J. Ilavsky; Argonne National Laboratory, Argonne, IL, USA

Porous Architecture of SPS Thick Y-PSZ Coatings Structured at the Sub-Micrometer Scale ... 931
A. Bacciochini, G. Montavon, A. Denoirjean, P. Fauchais; University of Limoges, Limoges, France

Relationship between the Interlamellar Bonding and Properties of Plasma-Sprayed Y₂O₃-ZrO₂ Coatings ... 939
Y.-Z. Xing, C.-J. Li, C.-X. Li, G.-J. Yang; Xi’an Jiaotong University, Xi’an, Shaanxi, China

Microstructure, Mechanical and Shielding Properties of Fe₆₇.₅Ni₂₃.₅B₉ Coating / 321 Stainless Steel Laminated Composite by the Air-Plasma Spraying Procedure 945
W. Yang, C. Zhou; Aviation Engineering Institute, Guanghan, Sichuan, P.R. China

Characterization of Atomized Metallic Powders Using De Laval Nozzle 952
O. Khatim, M.P. Planche, L. Dembinski, C. Coddet; LERMPS-UTBM Site de Sévenans,
Belfort, France

An Approach to Control the Interlamellar Bonding of Plasma-Sprayed Y₂O₃-ZrO₂ Coatings through Deposition Temperature ... 957
C.-J. Li, Y.-Z. Xing, C.-X. Li, G.-J. Yang; Xi’an Jiaotong University, Xi’an, Shaanxi, China
Improvement of Impact Resistance of WC-Cr3C2-Ni Based Coatings by Means of Hardness Control of Undercoat

J. Kitamura, S. Osawa, H. Ibe, H. Mizuno, S. Tawada; Fujimi Incorporated, Kakamigahara, Gifu, Japan

Effects of Some Light Alloying Elements on the Oxidation Behavior of Fe and Ni-Cr Based Alloys during Air Plasma Spraying

Z. Zeng, S. Kuroda, J. Kawakita, M. Komatsu, H. Era; (1) Kurashiki Boring Kiko Co., Ltd. Asakuchi, Okayama, Japan, (2) National Institute for Materials Science, Tsukubay, Japan, (3) Kyushu Institute of Technology, Kitakyushu, Fukuoka, Japan

Study of the Splat-Substrate Interface for a NiCr Coating Plasma Sprayed on to Polished Aluminum and Stainless Steel Substrates

S. Brossard, P.R. Munroe, A. Tran, M.M. Hyland; (1) University of New South Wales, NSW Sydney, Australia, (2) University of Auckland, Auckland, New Zealand

Influence of Microstructure and Mechanical Properties on the Tribological Behavior of Flame Sprayed Al2O3-TiO2 and WC-NiFeCr Coatings

A.G. González, F. Vargas, M.E. López, A. Toro; (1) Universidad de Antioquia, Medellín, Colombia, (2) Universidad Nacional de Colombia, Medellín, Colombia

Influence of Powder Structure on the Micro-Hardness and Fracture Toughness of Cold-Sprayed WC-12Co Deposit

P.-H. Gao, G.-J. Yang, C.-J. Li, C.-X. Li; Xi'an Jiaotong University, Xi'an, Shaanxi, China

The Electrical and Mechanical Properties of Kinetic Sprayed Carbon Nanotube Aluminum Composite Coating

K. Kang, Y. Xiong, C. Lee; Hanyang University, Seongdong-Ku, Seoul, Korea

Testing Method of Spalling Resistance for Thermal Barrier Coating by Thermal Cycle and Thermal Shock

Y. Harada, Y. Itoh, Y. Kojima, F. Ono; (1) Tocalo Co., Ltd. Akashi, Hyogo, Japan, (2) Toshiba Corporation, Yokohama, Kanagawa, Japan, (3) Hitachi Ltd, Hitachi, Ibaraki, Japan, (4) Osaka Science & Technology Center, Osaka, Japan

Phase Composition Changes of Plasma Sprayed TiO2 Coatings Deposited under Different In-Flight Temperatures and Velocities

J. Cizek, K.A. Khor; Nanyang Technological University, Singapore

Effect of Powder Characteristics on Properties of Warm-Sprayed WC-Co Coatings

P. Chivavibul, M. Watanabe, S. Kuroda, M. Komatsu, K. Sato, J. Kitamura; (1) National Institute for Materials Science, Ibaraki, Japan, (2) Fujimi Incorporated, Gifu, Japan

Characterization of Residual Stresses in Al and Al2O3 Cold Sprayed Coatings

The Effect of Heat Treatment on the Oxidation Mechanism of Blended Powder Cr3C2-NiCr Coatings

S. Matthews, B. James, M. Hyland; (1) Massey University, Auckland, New Zealand, (2) The University of Auckland, Auckland, New Zealand
A Comparative Study of the Isothermal Oxidation Behaviour of APS, VPS and HVOF CoNiCrAlY Coatings
M. Di Ferdinando¹, A. Fossati¹, A. Lavacchi¹, F. Borgioli¹, U. Bardi¹, C. Giolli², A. Scrivani², G. Rizzi²; (1) University of Florence, Florence, Italy, (2) Turbocoating S.p.A, Parma, Italy

High Temperature Behavior of Newly Developed Oxide Dispersion Strengthened NiCoCrAlY Coatings
K. Bobzin, T. Schläfer, K. Richardt, M. Brühl; RWTH Aachen University, Aachen, Germany

Influence of the Substrate Hardness on the Rolling Contact Fatigue of WC-17%Co Hardmetal Coatings
L.-M. Berger¹, K. Lipp², U. May²; (1) Fraunhofer Institute for Material and Beam Technology IWS, Dresden, Germany, (2) Fraunhofer Institute for Structural Durability and System Reliability LBF, Darmstadt, Germany

Surface and Coating Treatments

Development of Thermal Spray Coatings with Corrosion Protection and Antifouling Properties
K. Murakami, M. Shimada; National Maritime Research Institute, Mitaka, Tokyo, Japan

Densification of Atmospheric Plasma Sprayed Wear Resistant Coatings
W. Tillmann, E. Vogli, B. Krebs, A.E. Tekkaya, A. Brosius, V. Franzen; Technische Universität Dortmund, Germany

Tribological Properties of HVOF Sprayed Tungsten Carbide Coatings after EDM Process
W. Żórawski, N. Radek; Technical University of Kielce, Kielce, Poland

Heat Flux Controls by in situ Laser Treatment for Thermal Spraying
Y. Danlos, S. Costil, S. Deng, H. Liao; LERMPS Université de Belfort Montbéliard, Belfort, France

Effects of Heat Treatment on the Mechanical Properties of Plasma-Sprayed 316L Coatings
B.-H. Tian, L. Chang, W.-L. Qu, Y. Gao; Dalian Maritime University, Dalian, China

Cooling in Thermal Spraying – CO₂ and Its Advantages
W. Kroemmer, P. Heinrich; Linde AG, Unterschleissheim, Germany

Thermal Spray and Other Surface Engineering Technologies

Chemical Vapor Deposition and Atomic Layer Deposition of Coatings for Mechanical Applications
G.L. Doll¹, T.W. Scharf²; (1) The Timken Technology Center, Canton, OH, USA, (2) The University of North Texas, Denton, TX, USA

Polymer Thermal Spraying: A Novel Coating Process
M. Ivosevic, S.L. Coguill, S.L. Galbraith; Resodyn Corporation, Butte, MT, USA
Ecodesign of Surface Coatings: How to Conciliate Environmental and Technical Performances?

N. Serres, F. Hlawka, A. Cornet, S. Costil, C. Langlade, F. Machi;
(1) INSA de Strasbourg - LISS, Strasbourg, France, (2) UTBM - LERMPS, Sévenans, France, (3) IREPA LASER, Illkirch, France

Three Years Corrosion Tests of Nanocomposite Epoxy Sealer for Metalized Coatings on the East China Sea

Y. Chun-long, A. Yun-qi, S. Ya-tan; China University of Mining & Technologies, Xuzhou, Jiangsu, China

Internal Diameter Coating Production by Pulsed Gas Dynamic Spraying

B. Jodoin, M. Yandouzi; University of Ottawa, Ottawa, ON, Canada

HVOF and HVSFS Coatings for Reduction of Wear and Friction in Cylinder Liners

J. Rauch, A. Manzaf, A. Killinger, R. Gadow; (1) Universität Stuttgart, Stuttgart, Germany, (2) Technologietransferinitiative TTI GmbH, Stuttgart, Germany

Recent Application of Thermal Spray to Thermal Power Plants

A. Notomi, N. Sakakibara, T. Torigoe; (1) Mitsubishi Heavy Industries, Ltd, Nagasaki, Japan, (2) Mitsubishi Heavy Industries, Ltd, Takasago, Japan

Drag Reduction and Self-Cleaning of Thermal Sprayed Surfaces by the Combination of Materials with Positive and Negative Thermal Expansion Coefficients

J. Wilden, S. Jahn, V.E. Drescher, P. Schaaf; (1) Technische Universität Berlin, Berlin, Germany, (2) Technische Universität Ilmenau, Ilmenau, Germany

External Ballistics of Powder under Detonation Spraying

V. Ulianitsky, A. Shtertser, D. Pervushin, I. Smurov;
(1) Lavrentyev Institute of Hydrodynamics, SB RAS, Novosibirsk, Russia,
(2) Ecole Nationale d'Ingénieurs de Saint-Etienne, Saint-Etienne, France

Electric Characteristics of Plasma Arc Produced by Bi-Anode Torch

L.T. An, Y. Gao; Dalian Maritime University, Dalian, P.R. China

MMCs Coatings with High SiC Volume Fraction Retention by Pulsed-Gas Dynamic Spraying

M. Yandouzi, P. Richer, B. Jodoin; University of Ottawa, Ottawa, ON, Canada

Remelting of Flame Spraying PEEK Coating Using Lasers

A. Soveja, S. Costil, H. Liao, P. Sallamand, C. Coddet; (1) LERMPS-UTBM, Belfort, France, (2) Ltm – Institut Carnot de Bourgogne, Le Creusot, France

Feather-Like Structured YSZ Coatings at Fast Rates by Plasma Spray Physical Vapor Deposition

A. Shinozawa, K. Eguchi, M. Kambara, T. Yoshida; The University of Tokyo, Tokyo, Japan

Metal and Non-Metal Film Formation Using Atmospheric Aerosol Spray Method

H. Choi, K. Kim, T. Kim, H. Choi; (1) Sungkyunkwan University Cheoncheon-dong, Suwon, Korea, (2) Samsung Electro Mechanics Corporation, Maetan-dong, Suwon, Korea
Cold Spraying Combined to Laser Surface Pre-Treatment Using PROTAL®
D.K. Christoulis¹, S. Guetta¹, V. Guipont¹, M.H. Berger¹, M. Jeandin¹, M. Boustie², S. Costil³,
Y. Ichikawa⁴, K. Ogawa⁴, E. Irissou⁵, J.-G. Legoux⁵, C. Moreau⁵; (1) Mines-ParisTech,
Evry, France, (2) Laboratoire de Combustion et de Détonique, Futuroscope, France,
(3) Université de Technologie de Belfort-Montbéliard, Belfort, France, (4) Tohoku University,
Tohoku, Japan, (5) National Resource Council Canada, Montreal, QC, Canada

Laser Remelting Modification of HVOF Sprayed WC-Based Cermet Coatings
X.H. Tan, J.S. Sun; Shanghai Baosteel Equipment Maintenance Co., Ltd., China

Wear Protection

Wear and Corrosion Behaviour of HVOF-Sprayed WC-CoCr Coatings on Al Alloys
G. Bolelli¹, L. Lusvarghi¹, M. Barletta², V. Karhail³; (1) University of Modena and Reggio Emilia,
Modena, Italy, (2) University of Rome “Tor Vergata”, Roma, Italy, (3) Indian Institute of
Technology, Bombay, India

Studies on the Sliding Wear Performance of Plasma Spray Ni-20Cr and Ni₃Al Coatings
M. Kaur¹, H. Singh¹, B. Singh¹, B. Singh²; (1) Baba Banda Singh Bahadur Engineering College,
Punjab, India, (2) Multitech Towers Private Limited, Chandigarh, India

Characterization of Boron Carbide Thermal Sprayed Coatings for
High Wear Resistance Performance
M. Rosales¹, F. Camargo¹, C.R.C. Lima²; (1) Ogramac Metallization, São Paulo, Brazil,
(2) Methodist University of Piracicaba, São Paulo, Brazil

High Performance – Low Costs: Iron Based Coatings with Improved
Microstructures for Wear and Corrosion Applications
K. Bobzin, T. Schlaefer, K. Richardt, T. Warda; RWTH Aachen University, Aachen, Germany

Wear Behavior of Plasma Spayed Al-Si/TiB₂/h-BN Composite Coating
I. Ozdemir¹, Y. Tsunekawa², C. Tekmen², T. Grund³, B. Wielage³; (1) Dokuz Eylül University,
Izmir, Turkey, (2) Toyota Technological Institute, Nagoya, Japan, (3) Institute of
Composite Materials, Chemnitz, Germany

Coatings for Polymer Turbine Blades
S. Dixit, M. Chin, R. Dixit; Plasma Technology Inc. Torrance, CA, USA

Comparison of Nanometric and Micrometric Alumina Coatings on Wear Resistance
H. Ageorges¹, R. Vert¹, G. Darut¹, F. Zishuan²; (1) University of Limoges, Limoges, France,
(2) University of Science and Technology, Beijing, China

The Effect of Toughness on Wear Resistance of Alumina –
Titania Coatings Obtained by APS
F. Vargas¹,², H. Ageorges², P. Fauchais², M.E. López¹; (1) University of Antioquia,
Medellín Colombia, (2) University of Limoges, Limoges, France
Training, Quality, and Safety

LCA Comparison of Electroplating and Other Thermal Spray Processes 1207
A. Moign¹, A. Vardelle², J.G. Legoux³, N.J. Themelis⁴; (1) Centre d'Ingénierie en Traitements et
Revêtements de Surface Avancés, (2) University of Limoges, Limoges, France, (3) National
Resource Council Canada, Montreal, QC, Canada, (4) Columbia University, New York, NY, USA

Thermal Spray Process Training – A New Perspective ... 1213
J.P. Sauer¹, M. Carroll²; (1) Sauer Engineering, Cincinnati, OH, USA,
(2) Delta Airlines, Atlanta, GA, USA
2009 ITSC Organizing Committee

General Chairmen
Mitchell Dorfman
Sulzer Metco
Westbury, New York

Peter Heinrich
Linde AG
Pullach, Germany

Technical Chairmen
Charles Kay
ASB Industries
Barberton, Ohio

Kristin Bonzin
RWTH Aachen University
Aachen, Germany

Symposia Chairs

Applications and Case Studies
M. Brad Beardsley
Caterpillar Inc.
Laura, Illinois

W. Herlaar
Flame Spray Technologies
Duiven, Netherlands

Equipment, Processes and Modeling
Kristen Bonzin
RWTH Aachen University
Aachen, Germany

Jeganathan Karthikeyan
ASB Industries
Barberton, OH

Armelle Vardelle
University of Limoges
Limoges, France

General
Richard Knight
Drexel University (USA)
Philadelphia, Pennsylvania

Charles Kay
ASB Industries
Barberton, Ohio

Materials in Thermal Spray
Rogerio Lima
National Research Council
Boucherville, Canada

Dongming Zhu
NASA – Glen Research Center
Cleveland, Ohio

Advances in Turbine Coatings
David Rickerby
Rolls-Royce
London, United Kingdom

Ramesh Subramanian
Siemens Energy
Orlando, Florida

Biomedical
T. Zhang
Stryker Howmedica Osteonics
Mahway, New Jersey

William Clyne
University of Cambridge
Cambridge, United Kingdom

Electronic & Semi-Conductor Applications
Robert Gansert
Advanced Materials and Technology Services
Simi Valley, California

Technology Advances in Thermal Spray
Kazumi Tani
Tocalo Company Limited
Akashi, Japan

Robert Vassen
Forschungszentrum Jülich
Jülich, Germany

Posters
Joachim Heberlein
University of Minnesota
Minneapolis, Minnesota