
Volume 5B, like every Volume of the ASM Handbook series, was written by recognized industry experts, reviewed by groups of their peers, and edited by professionals dedicated to developing reference publications of the highest technical and editorial quality. This results in authoritative, reliable sources of information in every area of materials specialization, now including protective organic coatings.

ASM International is grateful for the hard work and dedication of its many volunteer authors and reviewers who gave of their expertise and time to make Volume 5B possible, particularly Kenneth B. Tator, P.E., KTA-Tator, Inc., Volume Editor and author of numerous articles in the Volume.

ASM Handbook, Volume 5B, Protective Organic Coatings is comprised of five divisions, which offer introductory material, an in-depth presentation of specific coating materials, practical information on surface preparation and coating application, coverage of coating use by various industries, and detailed discussion of coating analysis and evaluation methods. Volume 5B authors provided the latest information on the many industry standards that must be adhered to in the preparation, application, and testing of protective coatings.

Volume 5B includes full-color printing of all of its figures, including all photographs. ASM International thanks Kenneth B. Tator, P.E., and KTA-Tator, Inc., a corrosion and coatings consulting and inspection firm, for their generous contributions that have allowed the photographs in this book to be reproduced in color.

Sunniva R. Collins, Ph.D.
President
ASM International

Terry F. Mosier
Interim Managing Director
ASM International
Corrosion is a phenomenon of nature involving the deterioration of a material (usually a metal) due to a chemical or electrochemical reaction with the environment.

In accord with this definition, virtually every material object around us corrodes or can be expected to corrode. Metallic corrosion is most evident, and that of steel is most familiar to even casual observers because it results in a brown-colored rust that leads to pitting and ultimate loss of structural strength. Of course, other metals deteriorate to varying degrees on exposure to certain environments, although the deterioration may not be as evident. Corrosion of nonmetals also occurs, and that of wood and concrete is also of great concern. This destructive material deterioration occurs to transportation vehicles (automobiles, trucks, railroad cars, etc.), bridges, pipelines of all types (water and wastewater, oil, gas, etc.), private homes and public buildings, even home appliances, electronic equipment, and—heaven forbid—personal computers and cell phones. Corrosion is all-pervasive in most environments in every region, country, and continent around the world!

However, by utilizing existing corrosion-prevention technologies, the cost can be drastically reduced, perhaps by one-third or more. What are those technologies? They include proper corrosion design and maintenance; the use of more resistant construction materials, such as corrosion-resistant alloys and plastics; the use of corrosion inhibitors; anodic and cathodic protection; metallic coatings; and the use of organic protective coatings. This last technology is the subject of this Volume. It is an important subject because organic protective coatings are by far the most widely used means of corrosion protection. The application and use of organic protective coatings, including zinc-rich coatings, accounted for 88.3% of all monies spent for corrosion protection in the United States, as estimated by the report “Corrosion Cost and Preventive Strategies in the United States,” FHWA-RD-01-156, issued by the Federal Highway Administration in 2002. Adjusted to the 2013 estimated cost of corrosion in the United States of $450 billion utilizing the same ratios of corrosion cost to coating protection expense used in 2002, the money spent for protective coating corrosion abatement in the United States would exceed $175 billion, or over $545 for every man, woman, and child in the United States, at the end of 2014—not a trifling sum!

This printed Volume is but a snapshot in time regarding coatings. It is not all-inclusive, as there are other areas where coatings are used and some specific types of coatings that are not covered herein. Moreover, like everything else in life these days, change is constant, and the rate of technological improvement is accelerating at an ever-increasing rate. Coatings, like all materials, have benefited greatly from the advent of nanotechnology, and superior coatings are being introduced to the market on an almost daily basis. ASM International is releasing this book not only in printed form but also in a digital format, available on the ASM International website. This makes possible future updates and additional content, so our coverage keeps pace with technology. I absolutely encourage readers to assist ASM International in keeping this Volume’s digital version current with updated technology.

This Volume is organized into five divisions: Introduction (consisting of four articles); Coating Materials (nineteen articles); Surface Preparation and Coating Application (seven articles); Industrial Uses (nine articles); and Coating Analysis and Evaluation (six articles). A total of 50 authors wrote the Volume’s 45 articles. I am most grateful to those authors, and their employer corporations and organizations, for the contribution of the considerable time and expertise necessary to write articles for this Volume. What a remarkable group of professionals!

I’d also like to thank Patty Conti, Production Coordinator; Kate Fornadel, Senior eProduction Coordinator; Diane Whitelaw, Production Coordinator; and Madrid Tramble, Manager, Production at ASM International for publishing this first *ASM Handbook* totally in color. A color production requires a lot more attention to detail than a black-and-white production, and Patty and the ASM group have pulled it off—congratulations! Others at ASM International who deserve special thanks are Steve Lampman, Senior Content Developer; Karen Marken, Senior Managing Editor; and Scott Henry, Director, Content and Knowledge-Based Solutions.

I’m indebted to Amy Nolan, Content Developer at ASM International, for helping to obtain authors and reviewers and for nagging authors (mostly me) to get their articles written on schedule. Without her, this book could not have been written.

I would also like to thank my employer, KTA-Tator, Inc., for so graciously allowing me the time to work on this Volume, as I conducted much of my work at home—although they likely felt they were better off without me at the office.

Finally, and perhaps most importantly, I would like to thank my wife Maureen who put up with my computer rage and other frustrations while I was working at home. She is the love of my life, and, as a result of my Handbook effort, while always a beautiful woman, Maureen now has exemplary patience, resilience, and tolerance—I am truly blessed!

Ken Tator
Editor
Policy on Units of Measure

By a resolution of its Board of Trustees, ASM International has adopted the practice of publishing data in both metric and customary U.S. units of measure. In preparing this Handbook, the editors have attempted to present data in metric units based primarily on Système International d’Unités (SI), with secondary mention of the corresponding values in customary U.S. units. The decision to use SI as the primary system of units was based on the aforementioned resolution of the Board of Trustees and the widespread use of metric units throughout the world.

For the most part, numerical engineering data in the text and in tables are presented in SI-based units with the customary U.S. equivalents in parentheses (text) or adjoining columns (tables). For example, pressure, stress, and strength are shown both in SI units, which are pascals (Pa) with a suitable prefix, and in customary U.S. units, which are pounds per square inch (psi). To save space, large values of psi have been converted to kips per square inch (ksi), where 1 ksi = 1000 psi. The metric tonne (kg \times 10^3) has sometimes been shown in megagrams (Mg). Some strictly scientific data are presented in SI units only.

To clarify some illustrations, only one set of units is presented on artwork. References in the accompanying text to data in the illustrations are presented in both SI-based and customary U.S. units. On graphs and charts, grids corresponding to SI-based units usually appear along the left and bottom edges. Where appropriate, corresponding customary U.S. units appear along the top and right edges.

Data pertaining to a specification published by a specification-writing group may be given in only the units used in that specification or in dual units, depending on the nature of the data. For example, the typical yield strength of steel sheet made to a specification written in customary U.S. units would be presented in dual units, but the sheet thickness specified in that specification may be presented only in inches.

Data obtained according to standardized test methods for which the standard recommends a particular system of units are presented in the units of that system. Wherever feasible, equivalent units are also presented. Some statistical data may also be presented in only the original units used in the analysis.

Conversions and rounding have been done in accordance with IEEE/ASTM SI-10, with attention given to the number of significant digits in the original data. For example, an annealing temperature of 1570 °F contains three significant digits. In this case, the equivalent temperature would be given as 855 °C; the exact conversion to 854.44 °C would not be appropriate. For an invariant physical phenomenon that occurs at a precise temperature (such as the melting of pure silver), it would be appropriate to report the temperature as 961.93 °C or 1763.5 °F. In some instances (especially in tables and data compilations), temperature values in °C and °F are alternatives rather than conversions.

The policy of units of measure in this Handbook contains several exceptions to strict conformance to IEEE/ASTM SI-10; in each instance, the exception has been made in an effort to improve the clarity of the Handbook. The most notable exception is the use of g/cm³ rather than kg/m³ as the unit of measure for density (mass per unit volume). SI practice requires that only one virgule (diagonal) appear in units formed by combination of several basic units. Therefore, all of the units preceding the virgule are in the numerator and all units following the virgule are in the denominator of the expression; no parentheses are required to prevent ambiguity.
List of Contributors and Reviewers

Thomas N. Ackerson
Curtiss-Wright IMR Test Labs

Cory Allen
Vulcan Painters, Inc.

Mike Ames
SAE Inc.

Joshua Armstrong
Tesla Nanocoatings Inc.

Pete Ault
Elzly Technology Corporation

D. Bennett
Corrosion Probe, Inc.

Mike Bentkjaer
Sherwin-Williams

Kristen Blankenship
AGC Chemicals Americas, Inc.

Kevin J. Brown
KTA-Tator, Inc.

Liza A. Capino
Sherwin-Williams Company

Jon R. Cavallo
UESI, Inc.

Kimmer Cline
KTA-Tator, Inc.

William D. Corbett
KTA-Tator, Inc.

Marvin Dettloff
Dow Chemical retiree

Stephen Dobrosielski
John B. Conomos, Inc.

Michael Eckart
Sherwin-Williams Company

Chuck J. Fite
Sherwin-Williams Company

Brendan Fitzsimons
Pyroly Limited

David French
Momentive Performance Materials

Scott Gaboury
Consultant

Fred Gelfant
Stoanhard/Epoplex

Denis Grimshaw
Jotun Powder Coatings

Bill Hannemann
Retired

Todd Hawkins
Tesla Nanocoatings Inc.

Jayson L. Heisel
KTA-Tator, Inc.

J. Bruce Henley
The Brock Group

Rick Huntley
KTA-Tator, Inc.

Robert A. Iezzi
RAI Technical Solutions, Inc.

Alison B. Kaelin
ABKaelin, LLC

J. Alan Kehr
Alan Kehr Anti-Corrosion

Charles Kennedy
Trenton Corporation

Kevin D. Knight
Retro-Specs, Ltd.

Michael G. Koehler
Professional Analysis and Consulting, Inc.

James Lane
Professional Analysis and Consulting, Inc.

Gary Larson
AzkoNobel Coatings

Barry Law
Master Painters Institute (MPI)

Chi Lee
Sherwin-Williams Company

Stanford T. Liang
AM Health and Safety, Inc.

Scott Lillard
University of Akron

James Machen
KTA-Tator, Inc.

Timothy McDonough
Sherwin-Williams Company

Carly McGee
KTA-Tator, Inc.

Donald Miller
Tnemec Company

Jim Molnar
UTLX

Douglas P. Moore
Carboine Company

R. A. Nixon
Corrosion Probe, Inc.

David Norman
Retired Corrosion Control Engineer

Ahlen Olson
Bayer Material Science LLC

Cindy O’Malley
KTA-Tator, Inc.

Dan O’Malley
KTA-Tator, Inc.

Robert Parker
AGC Chemicals Americas, Inc.

Trevor Parry
Consultant

Hap Peters
CHLOR RID International, Inc.

Stephen G. Pinney
Stephen G. Pinney, PE, Inc.

Dudley J Primeaux II
VersaFlex Inc.

Leo J. Procopio
The Dow Chemical Company

Frank Rampton
Trenton Corporation

Douglas Reardon
KTA-Tator, Inc.

Michael P. Reina
KTA-Tator, Inc.

Steven Reinstadtler
Bayer MaterialScience LLC

Greg Richards
KTA-Tator, Inc.

Cheryl Roberts
KTA-Tator, Inc.

Stuart J. Rowan
Case Western Reserve University
Don Sampson
API USA

Tim Schaffer
Watco Companies

Mark Schultz
Sherwin-Williams Company

E. Bud Senkowski
KTA-Tator, Inc.

Valerie Sherbondy
KTA-Tator, Inc.

Charles Simpson
Tesla Nanocoatings Inc.

William R. Slama
AkzoNobel

Bruce K. Snyder
Sherwin-Williams Company

Edward P. Squiller
Bayer Material Science LLC

Chrissy Stewart
KTA-Tator, Inc.

Heather Stiner
SSPC: The Society for Protective Coatings

Kenneth B. Tator
KTA-Tator, Inc.

Kenneth A. Trimber
KTA-Tator, Inc.

Jorma Virtanen
Tesla Nanocoatings Inc.

Lucian Williams
Denso NA

Todd Williams
Bayer Material Science LLC

Gerald L. Witucki
Dow Corning Corporation

Dennis Wong
ShawCor Ltd

Kurt Wood
Arkema, Inc.

Sunniva R. Collins
President
Case Western Reserve University

Jon D. Tirpak
Vice President
SCRA Applied R&D

Craig D. Clauser
Treasurer
Craig Clauser Engineering Consulting

Terry F. Mosier
Secretary and Interim Managing Director
ASM International

C. Ravi Ravindran
Immediate Past President
Ryerson University

Iver Anderson
Ames Laboratory

Kathryn A. Dannemann
Southwest Research Institute

Mitchell Dorfman
Sulzer Metco (US), Inc.

Jacqueline M. Earle
Caterpillar, Inc

James C. Foley
Los Alamos National Laboratory

John R. Krouth
Applied Process, Inc.

Zi-Kui Liu
The Pennsylvania State University

Tirumalai S. Sudarshan
Materials Modification, Inc.

David B. Williams
The Ohio State University

Student Board Members

Virginia K. Judge
Colorado School of Mines

Anthony M. Lombardi
Ryerson University

Myrissa N. Maxfield
Virginia Tech

George F. Vander Voort, Chair
Struers Inc.

Alan P. Druschitz, Vice Chair
Virginia Tech

Joseph W. Newkirk, Immediate Past Chair
Missouri University of Science & Technology

Craig Clauser, Ex-Officio Member
Craig Clauser Engineering Consulting

Jacqueline M. Earle, Board Liaison
Caterpillar

John R. Krouth, Board Liaison
Applied Process Incorporated

Scott Beckwith
SAMPE

Rodney R. Boyer
RFI Consulting

Narendra B. Dahotre
University of North Texas

Jon L. Dossett
Consultant

Steven C. Heifner
Sypris Technologies Incorporated

Volker Heuer
ALD Vacuum Technologies GmbH

Li Ling
Shanghai University

Brett A. Miller
IMR Metallurgical Services

Thomas E. Prucha
American Foundry Society

Valery Rudnev
Inductotherm Incorporated

John Deere Technology Center India

Prasan K. Samal
Consultant

Roch J. Shipley
Professional Analysis Consulting Inc.

Manas Shiriqkaor
Elwood National Crankshaft

Jeffery S. Smith
Material Processing Technology LLC.

Jaimie S. Tiley
US Air Force Research Lab

George E. Totten
G.E. Totten & Associates LLC

Dustin A. Turnquist
Engineering Systems Inc.

Charles V. White
Kettering University

J.F. Harper
(1923–1926) (Member 1923–1926)

W.J. Merten
(1927–1930) (Member 1923–1933)

L.B. Case
(1931–1933) (Member 1927–1933)

C.H. Herty, Jr.
(1934–1936) (Member 1930–1936)

J.P. Gill
(1937) (Member 1934–1937)

R.L. Dowdell
(1938–1939) (Member 1935–1939)

G.V. Luerssen
(1943–1947) (Member 1942–1947)

J.B. Johnson
(1948–1951) (Member 1944–1951)

E.O. Dixon

N.E. Promisel

R.W.E. Leiter

D.J. Wright
(1964–1965) (Member 1959–1967)

J.D. Graham

W.A. Stadler

G.J. Shubat

R. Ward

G.N. Maniar

M.G.H. Wells

J.L. McCall

L.J. Korb

T.D. Cooper

D.D. Huffman

D.L. Olson

R.J. Austin

W.L. Mankins
(1994–1997) (Member 1989–)

M.M. Gauthier

C.V. Darragh
(1999–2002) (Member 1989–)

Henry E. Fairman

Jeffrey A. Hawk
(2004–2006) (Member 1997–)

Larry D. Hanke
(2006–2008) (Member 1994–)

Kent L. Johnson
(2008–2010) (Member 1999–)

Craig D. Clauser
(2010–2012) (Member 2005–)

Joseph W. Newkirk
(2012–2014) (Member 2005–)

George F. Vander Voort
(2014–) (Member 1997–)
Contents

Introduction ... 1

Elemental Chemistry Introduction

Kenneth B. Tator 3

Elements .. 3

Creation of Elements 4

Atoms ... 5

Valence Electrons 5

Assembly of Polymers from Atoms 7

Functional Groups 7

Chemical Bonding Structures 7

Composition of a Paint Coating

Chrissy Stewart 10

Pigments ... 11

Additives ... 13

Solvent .. 13

Volatile Organic Compounds 14

Film-Forming Mechanisms of Various Coating Types 15

Coating Systems Defined 16

Qualification Testing for Coating System Selection

William D. Corbett 17

Methods for Qualifying Coating Systems 17

Independently Generated Data versus Coating-Manufacturer-Generated Data 18

Standard Laboratory Test Procedures for Qualifying Coating Systems 18

Establishing Minimum Performance Requirements 19

Overview of Quality and the Standards, Programs, and Certifications Used in the Coatings Industry

Alison B. Kaelin 32

Defining Quality, Quality Assurance, Quality Control, and Quality Management 32

Evolution of Quality Control/Quality Assurance in Coatings 33

Standards, Quality Programs, and Certifications in the Coatings Industry 34

Conclusion .. 35

Coating Materials 37

Alkyd Resins

Kenneth B. Tator and Michael G. Koehler 39

Alkyd History 39

Alkyd Resin Chemistry 40

Drying Oil .. 42

Drying Reactions 42

Alkyd Production 43

Coating Formulations 43

Driers ... 43

Solvents .. 44

Oil Content .. 44

Alkyd Modification 45

Application Methods 45

Commercial Products 45

Concerns about Using Alkyd Coatings 46

Summary ... 46

Acrylic Coatings

Leo J. Procopio 48

Acrylic Polymer Chemistry 48

Acrylic Polymers for Solventborne Coatings 50

Acrylic Polymers for Waterborne Coatings 51

Film Formation of Acrylic Latex Polymers 52

Types of Chemistries Available in Waterborne Acrylic Latex Coatings 53

Types of Waterborne Acrylic Coatings 54

Benefits and Challenges of Waterborne Latex Coatings ... 57

Industrial Maintenance Applications Using Latex Coatings 57

Advances in Waterborne Latex Coatings for Industrial Maintenance 58

Conclusions 60

Epoxy Resins and Curatives

Kenneth B. Tator 63

Epoxy History 63

Epoxy Resins 63

Epoxy Hardeners/Curatives/Co-Reactants/Co-Polymers .. 68

Concerns regarding the Use of Epoxy Coatings 76

Polyvinylidene Fluoride-Based Coatings Technology .. 80

Robert A. Iezzi 80

Fluoropolymer Background 80

General Properties of Polyvinylidene Fluoride 80

Polymerization of Polyvinylidene Fluoride 81

Polyvinylidene Fluoride Resin Types 81

Coating Formulation of Polyvinylidene Fluoride 82

Application of Polyvinylidene Fluoride-Based Coatings ... 83

Coating Properties of Polyvinylidene Fluoride 83

Typical End Uses of Polyvinylidene Fluoride-Based Coatings 85

Opportunities for Improvement 85

Health and Safety Considerations of Polyvinylidene Fluoride 85

Summary ... 86

Fluoroethylene Vinyl Ether Resins for High-Performance Coatings 88

Robert Parker and Kristen Blankenship 88

The Chemistry of FEVE Resins 88

FEVE Resin Types 89

Methods of Formulation for FEVE Resins 89

FEVE Coating Properties 91

Applications of FEVE-Based Coatings 93

Concerns When Formulating and Using FEVE Coatings .. 94

Health and Safety 95

Summary ... 95

Phenolic Coatings

Kenneth B. Tator 96

History of the Development of the Phenolic Resin 96

Chemistry and Varieties of Phenolic Resins 96

Coatings Based on Phenolic Resol Resins 98

Concerns when Using Phenolic Coatings 99

Polyester and Vinyl Ester Coatings

Kenneth B. Tator and William R. Slama 100

History ... 100

Polyester Coating Applications 101

Strengths of Polyesters and Vinyl Esters 101
Coating Application Methods

James Machen ... 251
Factors to Consider when Selecting an Application Method 251
Manual (Hand-Applied) Methods of Coating Application 252
Spray Application Methods 252
Spray Application Technique 255

Shop and Field Quality Control and Quality Assurance
William D. Corbett 256
Defining Quality ... 256
Quality Assurance .. 256
Quality Control ... 257
Duties of QA and QC Personnel 257
Sequence of QC and QA Observations and Testing 257
Quality Planning ... 257
Overview of Surface Preparation 258
Presurface-Preparation Inspection 259
Abrasive Quality ... 260
Abrasive Cleanliness ... 261
Lighting ... 261
Industry Standards for Assessing Surface Cleanliness 261
Inspection of Surface Preparation 263
Inspection of Wood and Concrete Surfaces 267
Inspection of Coating Mixing, Thinning, and Application 269
Calculation of Wet-Film Thickness 271
Postcoating Application Inspection 271
Documentation .. 276

Worker Health and Environmental Hazards Associated with Coating Application and Removal
Dan O'Malley and Stanford T. Liang .. 277
Controlling Exposure to Hazardous Coating Constituents 277
Environmental Hazards ... 285

Green Coatings
Barry Law .. 291
The History of Sustainable Development, Green Chemistry, and Green Coatings ... 291
Green Coatings—Marketing and Procurement 295
Conclusion ... 298
Master Painters Institute 'Green Performance Standard' 298
Master Painters Institute 'Extreme Green Performance Standard' 299
Master Painters Institute 'Recycled Product Performance Standards' 299
Intended Uses .. 301
Testing Details .. 301
Call-Up Testing and Listing Requirements 301
GS-11-1993 ... 302
GC-03—1997 .. 302
GS-11 Edition 3.1—July 12, 2013 .. 302
GS-43 .. 303
EcoLogo Program Certification Criteria Document
CCD-047 .. 304
EcoLogo Program Certification Criteria Document
CCD-048 .. 304
LEED v3 ... 305
LEED v4 .. 306
Environment Canada Volatile Organic Compound Concentration Limits for Architectural Coatings Regulations ... 307
Utah R307-361 .. 310

Coating Various Substrates
Jayson K. Helseth ... 313
Preparing and Painting Steel ... 313
Preparing and Painting Cast Iron ... 315
Preparing and Painting Galvanizing ... 316
Preparing and Painting Stainless Steel, Aluminum, and other Nonferrous Metals ... 318
Preparing and Painting Concrete ... 319
Preparing and Painting Wood .. 322

Industrial Uses .. 325
Pipeline Industry Coatings
E. Bud Senkowski ... 327
Why Do We Need Pipeline Coatings? 327
How Long Have We Used Pipeline Coatings? 327
Developments during 1930 to 1950 .. 327
Developments during 1950 to 1970 .. 327
Developments since 1970 ... 328
The Evolution of Pipeline Coating Materials 328
Factors Affecting Pipeline Coating Performance 328
Current Usage Patterns of Pipeline Coating Materials 332
Other Pipeline Coating Materials in Current Use 332
Coating of Joints ... 337

Marine Coatings
Mark Schultz, Timothy McDonough, Michael Eckart, and Mike Bentsjær, Sherwin-Williams ... 340
The Vessel Interior—Ballast Tanks .. 340
Common Issues Encountered when Coating Ballast Tanks 341
Requirements Associated with Coating Ballast (and Associated) Tanks 343
Advent of Ultra-High Solids Coatings Ballast Tank Technology 345
Antifouling .. 348
The Vessel Exterior: Freeboard, Topside, and Decks 351
Conclusion ... 353
Coatings Used in the Nuclear Industry
E. Bud Senkowski ... 354
Basic Designs of Nuclear Power Plants 354
Coating Usage in Nuclear Plants .. 355
The Design Basis Accident .. 355
Design Basis Accident Testing .. 356
Other Critical Coating Parameters .. 357
Coating Selections in the Nuclear Plant 359
Protective Coating Strategies in Generation III Plants 360

Bridge Coatings
Greg Richards, Kimmer Cline, and Douglas Reardon 361
Bridge Deterioration .. 361
Types of Bridge Designs ... 361
Bridge Corrosion-Zone Environments 362
Bridge Areas of Greatest Corrosion Concern 365
Steel Bridge Coatings .. 366
Concrete Bridges .. 369
Application Methods .. 372
Coating Condition Assessment ... 372
Summary ... 373

Transportation—Railcar Coatings
Jim Molnar ... 374
A Brief History of Rail Coatings 374
The Rail Coating Environment .. 374
Exposures and Logistics ... 375
Exterior Rail Coatings ... 376
Application of Exterior Coatings 377
Interior Rail Coatings (Hoppers, Tanks, and Box) 379
Application ... 380
Rubber Linings (Tank Car Interiors) 382
Coating Selection ... 382
Regulatory Compliance (Tank Cars) 383
Summary ... 383
Appendix .. 384