TITANIUM
Physical Metallurgy
Processing and Applications

F.H. Froes, editor
Contents

Preface ... ix
About the Editor .. xi

Chapter 1
History and Extractive Metallurgy 1
 Historical Background .. 1
 The Early Titanium Industry and More Recent Developments 2
 Ores and Their Occurrences 9
 The Metal Titanium .. 9
 General Properties and Alloying Behavior 15
 Mechanical Properties 16
 Special Chemical and Physical Properties 17
 Economics ... 17
 Process Challenges 18
 Extractive Metallurgy 19
 Summary ... 27

Chapter 2
Introduction to Solidification and Phase Diagrams 31
 Atoms ... 31
 Solidification of Metals 32
 Alloying ... 35
 Phase Diagrams .. 37
 Summary ... 47
 Glossary ... 48

Chapter 3
Principles of Alloying Titanium 51
 Atomic Structure of Titanium 51
 Alloying Elements 56
 Titanium Alloys .. 66
 Terminal Alloy Formulation 71
 Intermetallic compounds Ti₃Al and Ti₃Al 71
 Summary ... 72
Chapter 4
Principles of Beta Transformation and Heat Treatment of Titanium Alloys

- Beta Transformation ... 75
- Metastable Phases and Metastable Phase Diagrams 77
- Transformation Kinetics 84
- Heat Treatment .. 86
- Summary .. 93

Chapter 5
Deformation and Recrystallization of Titanium and Its Alloys 95

- Deformation ... 95
- Development of Texture in Titanium 98
- Texture Strengthening ... 99
- Strain Hardening ... 102
- Strain Effects ... 104
- Superplasticity .. 104
- Internal Changes ... 105
- Annealing ... 106
- Neocrystallization ... 108
- Gamma Titanium Aluminide 110
- Summary .. 110

Chapter 6
Mechanical Properties and Testing of Titanium Alloys 113

- Effect of Alpha Morphology on Titanium Alloy Behavior 113
- Hardness ... 116
- Tensile Strength .. 116
- Ductility ... 118
- Creep and Stress Rupture 119
- Fatigue Strength .. 121
- Toughness ... 125
- Fatigue Crack Growth Rate 129
- High-Temperature Near-Alpha Alloys 130
- Alpha-Beta Alloys .. 131
- Beta Alloys .. 133
- Titanium Aluminides .. 133
- Metal-Matrix Composites 136
- Shape Memory Alloys ... 138
- Summary .. 139

Chapter 7
Metallography of Titanium and Its Alloys 141

- Review of Physical Metallurgy—Alpha and Beta 141
- Terminology Used to Describe Titanium Alloys Structures .. 143
- Metastable Phases ... 146
- Related Terms ... 149
- Ordered Intermetallic Compounds 151
- Effect of Fabrication and Thermal Treatment on Microstructure 152
<table>
<thead>
<tr>
<th>Chapter 8</th>
<th>Melting, Casting, and Powder Metallurgy</th>
<th>161</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melting</td>
<td></td>
<td>161</td>
</tr>
<tr>
<td>Casting</td>
<td></td>
<td>168</td>
</tr>
<tr>
<td>Titanium Powder Metallurgy</td>
<td></td>
<td>176</td>
</tr>
<tr>
<td>Safety</td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>Future Developments in Titanium Powder Metallurgy</td>
<td></td>
<td>202</td>
</tr>
<tr>
<td>Summary</td>
<td></td>
<td>203</td>
</tr>
<tr>
<td>Glossary</td>
<td></td>
<td>203</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 9</th>
<th>Primary Working</th>
<th>207</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crystal Structure</td>
<td></td>
<td>207</td>
</tr>
<tr>
<td>Forging</td>
<td></td>
<td>208</td>
</tr>
<tr>
<td>Ingot Breakdown</td>
<td></td>
<td>208</td>
</tr>
<tr>
<td>Forged Billets and Bars</td>
<td></td>
<td>210</td>
</tr>
<tr>
<td>Rolling</td>
<td></td>
<td>211</td>
</tr>
<tr>
<td>Radial Precision Forging Machines</td>
<td></td>
<td>212</td>
</tr>
<tr>
<td>Rolled Rod and Bar</td>
<td></td>
<td>212</td>
</tr>
<tr>
<td>Plate, Sheet, Coil, and Foil Rolling</td>
<td>214</td>
<td></td>
</tr>
<tr>
<td>Extrusion</td>
<td></td>
<td>216</td>
</tr>
<tr>
<td>Wire and Tube Processing</td>
<td></td>
<td>219</td>
</tr>
<tr>
<td>Summary</td>
<td></td>
<td>221</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 10</th>
<th>Secondary Working of Bar and Billet</th>
<th>225</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Metallurgy</td>
<td></td>
<td>225</td>
</tr>
<tr>
<td>Forging</td>
<td></td>
<td>226</td>
</tr>
<tr>
<td>Classes of Forgings</td>
<td></td>
<td>228</td>
</tr>
<tr>
<td>Extrusion</td>
<td></td>
<td>231</td>
</tr>
<tr>
<td>Microstructure and Mechanical Properties</td>
<td></td>
<td>234</td>
</tr>
<tr>
<td>Surface Effects of Heating</td>
<td></td>
<td>239</td>
</tr>
<tr>
<td>Modeling</td>
<td></td>
<td>240</td>
</tr>
<tr>
<td>Summary</td>
<td></td>
<td>240</td>
</tr>
<tr>
<td>Glossary</td>
<td></td>
<td>241</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 11</th>
<th>Forming of Titanium Plate, Sheet, Strip, and Tubing</th>
<th>243</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forming Considerations</td>
<td></td>
<td>243</td>
</tr>
<tr>
<td>Preparation for Forming</td>
<td></td>
<td>245</td>
</tr>
<tr>
<td>Heating Methods</td>
<td></td>
<td>246</td>
</tr>
<tr>
<td>Forming Lubricants</td>
<td></td>
<td>247</td>
</tr>
<tr>
<td>Tooling Materials</td>
<td></td>
<td>247</td>
</tr>
<tr>
<td>Forming Processes</td>
<td></td>
<td>247</td>
</tr>
<tr>
<td>Summary</td>
<td></td>
<td>262</td>
</tr>
</tbody>
</table>
Chapter 12
Joining Titanium and Its Alloys

Welding .. 265
Welding Procedures 269
Brazing .. 283
Soldering ... 285
Adhesive Bonding 286
Mechanical Fastening 287
Summary ... 290

Chapter 13
Machining and Chemical Shaping of Titanium

Machinability .. 293
General Machining Requirements 295
Scrap Prevention ... 299
Hazards and Safety Considerations 300
Milling Titanium .. 300
Turning, Facing, and Boring 305
Drilling Titanium .. 313
Surface Grinding ... 318
Broaching .. 319
Tapping ... 319
Recent Advances in Machining 320
Flame Cutting .. 322
Chemical Machining 323
Electrochemical Machining 327
Summary ... 328

Chapter 14
Corrosion .. 331
Corrosion Behavior of Titanium 331
Forms of Corrosion 335
Alloying for Corrosion Prevention 345
Chemical and Related Applications 347
Summary ... 350

Chapter 15
Applications of Titanium 353
Early Applications 353
Material Availability 353
Aerospace Applications 354
Sheet Metal Applications 362
Industrial Applications 363
Engineering Properties 363
Medical Applications 370
Consumer Applications 372
Armor Applications 373
Automotive Applications 374
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Applications</td>
<td>375</td>
</tr>
<tr>
<td>Power Utility Applications</td>
<td>375</td>
</tr>
<tr>
<td>Marine Applications</td>
<td>378</td>
</tr>
<tr>
<td>Miscellaneous Applications</td>
<td>378</td>
</tr>
<tr>
<td>Summary</td>
<td>379</td>
</tr>
</tbody>
</table>

Index.. 381
THE TITANIUM INDUSTRY has been in existence for approximately 60 years, and a great amount of information on the science and technology of this “wonder” metal has been compiled in that relatively short time. This reference book is based on an education course developed by ASM International in the early 1980s, which has been revised several times as new technical information became available, the latest revision in 2014 by F.H. (Sam) Froes, an expert in titanium and titanium alloy technology.

This book is a comprehensive compilation of the science and technology of titanium and its alloys. It details the history of the titanium industry and discusses various extraction processes, including the Kroll and Hunter processes and others. The fundamentals of solidification and phase diagrams are discussed, numerous detailed descriptions of beta (β)-to-alpha (α) transformations are included, and there are extensive discussions on processing, characteristics, and performance of the different classes of titanium alloys, including alpha (α), alpha-beta (α-β), beta (β), and intermetallic compounds. There are chapters devoted to alloying, deformation and recrystallization, mechanical properties and testing, and metallography. The following are also covered: melting and casting; forming of plate, sheet, strip, and tubing; joining; and machining. Practical aspects of primary and secondary processing are given, including a comprehensive description of superplastic forming. Details of expanding powder metallurgy techniques are included. The relationship of microstructure to mechanical properties is addressed in detail. A detailed description of corrosion behavior is included, and a comprehensive section on current applications of titanium and its alloys, documenting why certain alloys are used in various applications as well as their limitations, is also addressed.

Permeating the book are examples of how lowering the cost of titanium can lead to increased use. I believe that this book will be of considerable value to persons new to the industry as well as practitioners, and that it will significantly increase your knowledge of the science and technology of titanium.

Dr. F.H. (Sam) Froes
Tacoma, Washington, August 2014
Dr. F.H. (Sam) Froes has been involved in the titanium field for more than 40 years. After receiving a B.S. from Liverpool University, M.S. and Ph.D. degrees from Sheffield University, he was employed by a primary titanium producer, Crucible Steel Company, where he was leader of the Titanium Group. He spent time at the United States Air Force (USAF) Materials Laboratory, where he was a branch chief and supervisor of the Light Metals Group, which included titanium. While at the USAF Laboratory, Dr. Froes co-organized the landmark TMS-sponsored Conference on Titanium Powder Metallurgy in 1980. This was followed by 17 years at the University of Idaho, where he was director and department head of the Materials Science and Engineering Department. During this tenure, Dr. Froes was Chairman of the World Titanium Conference held in San Diego in 1992. He has over 800 publications, in excess of 60 patents, and has edited almost 30 books, the majority on various aspects of titanium. Recent publications include a comprehensive review of titanium powder metallurgy and an article on titanium additive manufacturing. He has organized more than 10 symposia on various aspects of titanium science and technology, including in recent years co-sponsorship of four TMS symposia on cost-effective titanium. Since the early 1980s, Dr. Froes has taught the ASM International education course “Titanium and Its Alloys.” He is an ASM Fellow, a member of the Russian Academy of Science, and was awarded the Service to Powder Metallurgy by the Metal Powder Association.