ASM International is proud to offer Composites as Volume 21 of the ASM Handbook. The nominal basis for this volume was the Engineered Materials Handbook, Volume 1, published in 1987. However, this new edition is, to a large degree, a brand new volume. New or greatly expanded coverage is provided, in particular, in the Sections on constituent materials, analysis and design, and processing. New sections have been added to address the important topics of maintenance, repair, and recycling. Coverage of polymer-matrix composites has been enhanced to address the latest materials advances and new application areas. Coverage of metal-matrix and ceramic-matrix composites has been revamped and greatly expanded to reflect the increasing industrial importance of these materials.

With the release of this new edition of the Composites volume, it seems like a natural transition for it to become part of the ASM Handbook series. The Metals Handbook series was renamed the ASM Handbook in the mid-1990s to reflect the increasingly interrelated nature of materials and manufacturing technologies. Since that time the ASM Handbook has incorporated increasing amounts of information about nonmetallic materials in each new and revised volume. ASM expects that other volumes in the Engineered Materials Handbook will become part of the ASM Handbook when they are revised.

Creating the new edition of this monumental reference work was a daunting task. We extend thanks and congratulations on behalf of ASM International to the Volume Chairs, Dan Miracle and Steve Donaldson, and the Volume’s 13 Section Chairs for the outstanding job they have done in developing the outline for the revision and guiding its development. Our gratitude is also due to the over 300 international experts from industry, academia, and research who contributed as authors and reviewers to this edition. In addition, we express our appreciation to the ASM International editorial and production staff for their dedicated efforts in preparing this volume for publication.

Aziz I. Asphahani
President
ASM International

Michael J. DeHaemer
Managing Director
ASM International
Policy on Units of Measure

By a resolution of its Board of Trustees, ASM International has adopted the practice of publishing data in both metric and customary U.S. units of measure. In preparing this Handbook, the editors have attempted to present data in metric units based primarily on Système International d’Unités (SI), with secondary mention of the corresponding values in customary U.S. units. The decision to use SI as the primary system of units was based on the aforementioned resolution of the Board of Trustees and the widespread use of metric units throughout the world.

For the most part, numerical engineering data in the text and in tables are presented in SI-based units with the customary U.S. equivalents in parentheses (text) or adjoining columns (tables). For example, pressure, stress, and strength are shown both in SI units, which are pascals (Pa) with a suitable prefix, and in customary U.S. units, which are pounds per square inch (psi). To save space, large values of psi have been converted to kips per square inch (ksi), where 1 ksi = 1000 psi. The metric tonne (kg) has sometimes been shown in megagrams (Mg). Some strictly scientific data are presented in SI units only.

To clarify some illustrations, only one set of units is presented on artwork. References in the accompanying text to data in the illustrations are presented in both SI-based and customary U.S. units. On graphs and charts, grids corresponding to SI-based units usually appear along the left and bottom edges. Where appropriate, corresponding customary U.S. units appear along the top and right edges.

Data pertaining to a specification published by a specification-writing group may be given in only the units used in that specification or in dual units, depending on the nature of the data. For example, the typical yield strength of steel sheet made to a specification written in customary U.S. units would be presented in dual units, but the sheet thickness specified in that specification might be presented only in inches.

Data obtained according to standardized test methods for which the standard recommends a particular system of units are presented in the units of that system. Wherever feasible, equivalent units are also presented. Some statistical data may also be presented in only the original units used in the analysis.

Conversions and rounding have been done in accordance with IEEE/ASTM SI-10, with attention given to the number of significant digits in the original data. For example, an annealing temperature of 1570 °F contains three significant digits. In this case, the equivalent temperature would be given as 855 °C; the exact conversion to 854.44 °C would not be appropriate. For an invariant physical phenomenon that occurs at a precise temperature (such as the melting of pure silver), it would be appropriate to report the temperature as 961.93 °C or 1763.5 °F. In some instances (especially in tables and data compilations), temperature values in °C and °F are alternatives rather than conversions.

The policy of units of measure in this Handbook contains several exceptions to strict conformance to IEEE/ASTM SI-10; in each instance, the exception has been made in an effort to improve the clarity of the Handbook. The most notable exception is the use of g/cm³ rather than kg/m³ as the unit of measure for density (mass per unit volume).

SI practice requires that only one virgule (diagonal) appear in units formed by combination of several basic units. Therefore, all of the units preceding the virgule are in the numerator and all units following the virgule are in the denominator of the expression; no parentheses are required to prevent ambiguity.
It should be apparent with just a quick glance through this Volume that a great deal of technical progress has been made since the first edition was published in 1987 (as Engineered Materials Handbook, Volume 1). Much of the earlier promise of high performance organic-matrix composites (OMCs) has been fulfilled. These materials are now the preferred design solution for an expansive scope of applications. Earlier concerns related to high cost and marginal manufacturability have been satisfactorily addressed through high volume and innovative design and manufacturing, including extensive use of unitized design and construction. A clear example of the success in these areas is illustrated by the growing use of high-performance composites in the commodity applications of civil infrastructure. Nonetheless, cost and manufacturability continue to be areas of vigorous development and hold hope for significant future advancements, along with the development of composite materials with higher specific properties, higher operating temperatures, and improved supportability. One can expect to see broad advances in innovative structural concepts and certification methods in the future.

The progress in metal-matrix composites (MMCs) has been equally remarkable. Although only marginal coverage was warranted in the first edition, MMCs now represent a significant material option in the international marketplace. The world market for MMCs was over 2.5 million kg (5.5 million pounds) in 1999, and an annual growth rate of over 17% has been projected for the next several years. Significant applications are in service in the aeronautical, aerospace, ground transportation, thermal management/electronic packaging, and recreation industries. The ability to offer significant improvements in structural efficiency and to excel in several other functional areas, including thermal management and wear, and to utilize existing metalworking infrastructure have aided this progress. Continued future extension into both new and existing markets is expected.

While ceramic-matrix composite (CMC) technology is still largely centered in the research and development phase, significant advancements have been made. Some commercial applications now exist, and strategies for growing market insertion are being pursued. The traditional motivation of structural performance and environmental resistance at the highest application temperatures continue to provide incentive for development. Recent important research accomplishments provide growing optimism that significant aero propulsion structural applications will be fielded in the coming decade.

The primary objective of ASM Handbook, Volume 21, Composites is to provide a comprehensive, practical, and reliable source of technical knowledge, engineering data, and supporting information for composite materials. Coverage of OMCs and MMCs is provided in a balanced fashion that reflects the maturity of each material class. Given the current status of CMC materials, less coverage is provided, but it, too, is focused in areas of current industrial importance. This Handbook is intended to be a resource volume for nonspecialists who are interested in gaining a practical working knowledge of the capabilities and applications of composite materials. Thus, coverage emphasizes well-qualified information for materials that can be produced in quantities and product forms of engineering significance. This Volume is not intended to be a presentation of fundamental research activities, although it certainly provides an important reference for scientists engaged in the development of new composite materials. The full range of information of importance to the practical technologist is provided in this Volume, including topics of constituent materials; engineering mechanics, design, and analysis; manufacturing processes; post-processing and assembly; quality control; testing and certification; properties and performance; product reliability, maintainability, and repair; failure analysis; recycling and disposal; and applications.

This new edition builds on the success of the version published as Volume 1 of the Engineered Materials Handbook. Information on OMCs has been updated to reflect advancements in this technology field, including improvements in low cost manufacturing technologies and significantly expanded applications in areas such as infrastructure. Progress in MMCs has been particularly dramatic since the previous edition, and new information on these materials provides an up-to-date comprehensive guide to MMC processing, properties, applications, and technology. CMCs also have entered service in limited applications since the previous edition, and the coverage of these materials reflects this progress. These three classes of composites are covered in each Section of the Volume as appropriate to provide a unified view of these engineered materials and to reduce redundancies in the previous edition.

We would like to offer our personal, heartfelt appreciation to the Section Chairpersons, article authors, reviewers, and ASM staff for sharing both their expertise and extensive efforts for this project.

Daniel B. Miracle
Steven L. Donaldson
Air Force Research Laboratory

Aziz I. Asphahani
President and Trustee
Carus Chemical Company

Gordon H. Geiger
Vice President and Trustee
University of Arizona

Michael J. DeHaemer
Secretary and Managing Director
ASM International

John W. Pridgeon
Treasurer
Allvac

Ash Khare
Immediate Past President and Trustee
National Forge Company

Trustees

Thomas G. Stoebe
University of Washington

Robert C. Tucker, Jr.
Praxair Surface Technologies, Inc.

E. Daniel Albrecht
Advanced Ceramics Research, Inc.

W. Raymond Cribb
Alloy Products

Brush Wellman Inc.

Walter M. Griffith
Air Force Research Laboratory

Kathleen B. Alexander
Los Alamos National Laboratory

Subi Dinda
DaimlerChrysler Corporation

R.G. (Gil) Gilliland
Oak Ridge National Laboratory

UT-Battelle, LLC

Andrew R. Nicoll
Sulzer Metco Europe GmbH

Members of the ASM Handbook Committee (2000–2001)

Craig V. Darragh
(Chair 1999–; Member 1989–)
The Timken Company

Bruce P. Bardes
(1993–)
Materials Technology Solutions Company

Rodney R. Boyer
Boeing Company

Toni M. Brugger
(1993–)
Carpenter Technology Corporation

Larry D. Hanke
(1994–)
Materials Evaluation and Engineering Inc.

Jeffrey A. Hawk
(1997–)
U.S. Department of Energy

Dennis D. Huffman
(1982–)
The Timken Company

Dwight Janoff
(1995–)
FMC Corporation

Kent L. Johnson
(1999–)
Engineering Systems Inc.

Paul J. Kovach
(1995–)
Stress Engineering Services Inc.

Brad Lesuer
(1999–)
Ford Motor Company

William L. Mankins
(1989–)
Metallurgical Services Inc.

Dana J. McCall
(1982–)
Zimmer Inc.

Srikanth Raghunathan
(1999–)
Nanomat Inc.

Mahi Sahoo
(1993–)
Natural Resources Canada

Karl P. Staudhammer
(1997–)
Los Alamos National Laboratory

Kenneth B. Tator
(1991–)
KTA-Tator Inc.

George F. Vander Voort
(1997–)
Buehler Ltd.

George A. Wildridge
(2000–)
Borg Warner Morse TEC Corporation

Dan Zhao
(1996–)
Johnson Controls Inc.

Previous Chairs of the ASM Handbook Committee

R.J. Austin
(1992–1994) (Member 1984–)

L.B. Case
(1931–1933) (Member 1927–1933)

T.D. Cooper

E.O. Dixon

R.L. Dowdell
(1938–1939) (Member 1935–1939)

M.M. Gauthier
(1997–1998) (Member 1990–)

J.P. Gill
(1937) (Member 1934–1937)

J.D. Graham

J.F. Harper
(1923–1926) (Member 1923–1926)

C.H. Herty, Jr.
(1934–1936) (Member 1930–1936)

D.D. Huffman
(1986–1990) (Member 1982–)

J.B. Johnson
(1948–1951) (Member 1944–1951)

L.J. Korb

R.W.E. Leiter

G.V. Luerssen
(1943–1947) (Member 1942–1947)

G.N. Maniar

W.L. Mankins
(1994–1997) (Member 1989–)

J.L. McCall

W.J. Merten
(1927–1930) (Member 1923–1933)

D.L. Olson

N.E. Promisel

G.J. Shubat

W.A. Stadler

R. Ward

M.G.H. Wells

D.J. Wright
(1964–1965) (Member 1959–1967)
Authors and Contributors

R.C. Adams
Lockheed Martin Aeronautical Systems

Suresh Advani
University of Delaware

David E. Alman
U.S. Department of Energy

Finn Roger Andressen
Reichhold AS

Keith B. Armstrong
Consultant

B. Tomas Åström
IFP SICOMP AB

Amit Bandyopadhyay
Washington State University

Yoseph Bar-Cohen
Jet Propulsion Laboratory

Robert J. Basso
Century Design Inc.

Mark Battley
Industrial Research Limited

Joseph J. Beanman, Jr.
University of Texas at Austin

John H. Belk
The Boeing Company

Tia Benson Tolle
Air Force Research Laboratory

Barry J. Berenberg
Caldera Composites

John Bootle
XC Associates Inc.

Chris Boshers
Composite Materials Characterization Inc.

Richard H. Bossi
The Boeing Company

David L. Bourell
University of Texas at Austin

Dennis Bowles
Northrop Grumman Corporation

Jack Boyd
CyTech Fiberite Inc.

Maureen A. Boyle
Hexcel Corporation

Shari Bugaj
FiberCote Industries Inc.

Frank Burzese
XC Associates Inc.

Flake C. Campbell
The Boeing Company

Karl K. Chang
DuPont

K.K. Chawla
University of Alabama

N. Chawla
Arizona State University

Eric Chesmar
United Airlines

Richard J. Chester
Aeronautical and Maritime Research Laboratory

S. Christensen
The Boeing Company

William F. Cole II
United Airlines

Bruce Crawford
Deakin University

George Dallas
TA Instruments

Joseph R. Davis
Davis & Associates

J.A. DiCarlo
NASA Glenn Research Center

Cynthia Powell Doğan
U.S. Department of Energy

Roderick Don
University of Delaware

Steven L. Donaldson
Air Force Research Laboratory

Louis C. Dorworth
Aharis Training Resources Inc.

Richard Downs-Honey
High Modulus New Zealand Limited

T.E. Drake
Lockheed Martin Aerospace

Lawrence T. Drzal
Michigan State University

G. Ehner
Menzolit-Fibron GmbH

D. Emahiser
GKN Aerospace

Roger W. Engelbart
The Boeing Company

Don O. Evans
Cincinnati Machine

Richard E. Fields
Lockheed Martin Missiles and Fire Control

Lynda Fiorini
XC Associates Inc.

Gerald Flanagan
Materials Sciences Corporation

Mark S. Forte
Air Force Research Laboratory

Marvin Foston
Lockheed Martin Aeronautical Systems

Luther M. Gammon
The Boeing Company

C.P. Gardiner
Defence Science & Technology Organisation, Australia

Nicholas J. Gianaris
Visteon Corporation

Ian Gibson
The University of Hong Kong

Lawrence A. Gintert
Concurrent Technologies Corporation

Jonathan Goering
Albany International Techniweave Inc.

John W. Goodman
Material Technologies Inc.

J.H. Gosse
The Boeing Company

Michael N. Grimshaw
Cincinnati Machine

Olivier Guillermin
Vistagy Inc.

H. Thomas Hahn
Air Force Office of Scientific Research

Paul Hakes
High Modulus New Zealand Limited

William C. Harrigan
MMC Engineering Inc.

L.J. Hart-Smith
The Boeing Company

Brian S. Hayes
University of Washington

Dirk Heider
University of Delaware

Edmund G. Henneke II
Virginia Polytechnic Institute and State University

John M. Henshaw
University of Tulsa

G. Aaron Henson III
Design Alternatives Inc.
Rikard B. Heslehurst
Australian Defence Force Academy
Arlen Hoebergen
Centre of Lightweight Structures TUD-TNO
Leslie A. Hoeckelman
The Boeing Company
Michael J. Hoke
Abaris Training Resources Inc.
J. Anders Holmberg
SICOMP AB
K. Hörsting
Menzolit-Fibron GmbH
Warren H. Hunt, Jr.
Aluminum Consultants Group Inc.
Michael G. Jenkins
University of Washington
L. Kahn
Georgia Institute of Technology
Vistasp M. Karbhari
University of California, San Diego
Kristen M. Kearns
Air Force Research Laboratory
Shrikant N. Khot
University of Delaware
Jeffrey J. Kilwin
The Boeing Company
Jim Kindinger
Hexcel Corporation
Donald A. Klosterman
University of Dayton
Frank K. Ko
Drexel University
Greg Kress
Delta Air Lines
Lawrence F. Kuberski
Fischer U.S.A.
R. Kühfusz
Menzolit-Fibron GmbH
Joseph M. Kunze
Triton Systems
Joe Lautner
Gerber Technology Inc.
Richard D. Lawson
The Boeing Company
David Lewis III
Naval Research Laboratory
Hong Li
PPG Industries Inc.
R. Liebold
Menzolit-Fibron GmbH
Shyh-Shiuh Lih
Jet Propulsion Laboratory
Jim R. Logsdon
EMF Corporation
Peter W. Lorraine
General Electric Company
Bhaskar S. Majumdar
New Mexico Institute of Mining and Technology
Ajit K. Mal
University of California, Los Angeles
Cary J. Martin
Hexcel Corporation
Jeffrey D. Martin
Martin Pultrusion Group
James J. Mazza
Air Force Research Laboratory
John E. McCarty
Composite Structures Consulting
Douglas A. McCarville
The Boeing Company
Colin McCullough
3M Company
Lee McHugh
McHugh Consulting Inc.
James McKnight
The Boeing Company
J. Lowrie McLarty
Air Force Research Laboratory
Carol Meyers
Materials Sciences Corporation
Andrew Mills
Cranfield University
Daniel B. Miracle
Air Force Research Laboratory
Stephen C. Mitchell
General Electric Aircraft Engines
John E. Moalli
Exponent Failure Analysis Associates
Robert Moore
Northrop Grumman Corporation
A.P. Mouritz
RMIT University
John Moylan
Delsen Testing Laboratories
Thomas Munns
University of Southern California
T. Kevin O’Brien
U.S. Army Research Laboratory
Michael J. Paleen
The Boeing Company
Awadh B. Pandey
Pratt & Whitney
Robert T. Parker
The Boeing Company
Tim Pepper
Ashland Chemical Company
Stanley T. Peters
Process Research
Charles W. Peterson
Aedas bv
Daniel R. Petrik
Hitco Carbon Composites
Shahid P. Qureshi
Georgia-Pacific Resins Inc.
Naveen Rastogi
Visteon Chassis Systems
Suraj P. Rawal
Lockheed Martin Astronautics
Scott Reeve
National Composite Center
Susan Robitaille
YLA Inc.
Carl Rousseau
Bell Helicopter
Paul A. Roy
Vantage Associates Inc.
C.D. Rudd
University of Nottingham
Daniel R. Ruffner
The Boeing Company
A.J. Russell
Docker Laboratory Pacific, DRDC
John D. Russell
Air Force Research Laboratory
Adam J. Sawicki
The Boeing Company
Henry A. Schaefer
The Boeing Company
Jeffrey R. Schaff
United Technologies Research Center
Hans-Wolfgang Schröder
EADS Deutschland GmbH
Mel M. Schwartz
Sikorsky Aircraft (retired)
Daniel A. Scola
University of Connecticut
Tito T. Serafini
Steve M. Shepard
Thermal Wave Imaging, Inc.
M. Singh
QSS Group Inc.
NASA Glenn Research Center
Raj N. Singh
University of Cincinnati
Cory A. Smith
DWA Aluminum Composites
E. Murat Sozer
KOC University
Horst Stienzenberger
Technochemie GmbH
Rich Stover
Lockheed Martin Aeronautics
Patricia L. Stumpf
Hartzell Propeller Inc.
Joseph E. Sumerak
Creative Pultrusions Inc.
Kirk Tackitt
U.S. Army Research Laboratory
E.T. Thostenson
University of Delaware
R.S. Trask
DERA Farnborough
J. Tucker
Southern Research Institute
Rebecca Ufkes
Ufkes Engineering

Barry P. Van West
The Boeing Company

Anthony J. Vizzini
University of Maryland

Frederick T. Wallenberger
PPG Industries Inc.

Paul J. Walsh
Zoltek Corporation

Stephen Ward
SW Composites

Jeff L. Ware
Lockheed Martin Aeronautics

James C. Watson
PPG Industries Inc.

David Weiss
Eck Industries Inc.

Mark Wilhelm
The Boeing Company

D.M. Wilson
3M Company

Rod Wishart
Integrated Technologies Inc. (Intec)

Mike R. Woodward
Lockheed Martin Aeronautics

Richard P. Wool
University of Delaware

H.M. Yun
NASA Glenn Research Center

F.W. Zok
University of California, Santa Barbara

A. Zureick
Georgia Institute of Technology

Carl Zweben
Composites Consultant
Reviewers

John W. Aaron
The Boeing Company

R.C. Adams
Lockheed Martin Aeronautical Systems

John C. Adelmann
Sikorsky Aircraft

Suresh Advani
University of Delaware

Suphal P. Agrawal
Northrop Grumman Corporation

Klaus Ahlborn
Miras Composites Systems

Bob Allanson
GKN Westland Aerospace

David P. Anderson
University of Dayton Research Institute

Donald A. Anderson
The Boeing Company

Douglas L. Armstrong
Fiber Innovations Inc.

Keith B. Armstrong
Consultant

B. Tomas Åström
IFP SICOMP AS

Mohan Aswani

Mark Batley
Industrial Research Limited, New Zealand

Behzad Bavarian
California State University, Northridge

Matthew R. Begley
University of Connecticut

Arie Ben-Dov
Israel Aircraft Industry

Tia Benson Tolle
Air Force Research Laboratory

Albert Bertram
Naval Surface Weapons Center

Edward Bernardon
Vistagy Inc.

R.T. Bhatt
NASA Glenn Research Center

Greg Black
Northrop Grumman Corporation

Tom Blankenship
The Boeing Company

George A. Blann
Buehler Ltd.

Ben R. Bognar
BP Amoco Chemicals

Gregg R. Bogucki
The Boeing Company

Raymond Bohlmann
The Boeing Company

Collin Bohn
The Boeing Company

Chris Boshers
Composite Materials Characterization Inc.

Dennis Bowles
Northrop Grumman Corporation

Alfonso Branca
Top Glass s.p.a.

Mike Brun
General Electric

Doug Brunner
Lockheed Martin

Bruce L. Burton
Huntsman Corporation

Mark Bush
University of Western Australia

Rick Callis
Creative Tooling

Flake C. Campbell
The Boeing Company

Gene Camponeschi
NSWCCD

Jay Carpenter
Lockheed Martin Aeronautics

Patrick E. Cassidy
Southwest Texas State University

Gilbert B. Chapman II
DaimlerChrysler Corporation

K.K. Chawla
University of Alabama

N. Chawla
Arizona State University

Judy Chen
The Boeing Company

Richard J. Chester
Aeronautical and Maritime Research Laboratory

Mark Chris
Bell Helicopter Textron

Stan Chichanoski
Steinerfilm Inc.

Bruce Choate
Northrop Grumman Corporation

Linda L. Clements
C & C Technologies

Todd Coburn
Adroit Engineering

William F. Cole II
United Airlines

Doug Condel

John Cooney

Bruce Cox
DaimlerChrysler Corporation

Jim Criss
Lockheed Martin Aeronautics

Alan Crosky
University of New South Wales

Maxwell Davis

J.G. Dean
Lockheed Martin

Thomas J. Dearlove
General Motors Corporation

Leen Deurloo
Adzel bv

Herve Deve
3M Company

José Manuel Luna Díaz
EADS-CASA Airbus

George DiBari
International Nickel

Jack Dini
Consultant

John Dion
BAE Systems

Alan Dobyns
Sikorsky Aircraft

Jim Door
Duke Engineering

Louis C. Dorworth
Abaris Training Resources Inc.

Timothy E. Easler
COI Ceramics Inc.

Jim Epperson

Jay Fiebig
Warner Robins Air Logistics Center
Steven Peake
Cytec-Fiberite Inc.

John Peters
A&P Technology

Bruce Pfund
Special Projects LLC

Fred Policelli
FPI Composites Engineering

Richard D. Pistole

Kevin Potter
University of Bristol

(Paul) Mack Puckett

Naveen Rastogi
Visteon Chassis Systems

Suraj P. Rawal
Lockheed Martin Astronautics

James Reeder
NASA Langley Research Center

David L. Rose
Polese Company

Tom Rose

Carl Rousseau
Bell Helicopter

Roger Rowell

C.D. Rudd
University of Nottingham

Daniel R. Ruffner
The Boeing Company

John Russell
Air Force Research Laboratory

Adam J. Sawicki
The Boeing Company

Robert E. Schafrik
GE Aircraft Engines

Warren C. Schimpf
Advanced Fiber Technology

John R. Schlup
Kansas State University

Daniel A. Scola
University of Connecticut

Mark Shea
The Boeing Company

Bill Schweinberg
Warner Robins Air Logistics Center

R. Ajit Shenoi
University of Southampton

Robert L. Sierakowski
Air Force Research Laboratory

Raymond J. Sinatra
Rolls Royce Corporation

J.P. Singh
Argonne National Laboratory

Lawrence H. Sobel
Northrop Grumman Corporation (retired)

Jonathan E. Spowart
UES Incorporated

David A. Steenkamer
Ford Motor Company

W. Kent Stewart
Bell Helicopter Textron

Bob Stratton

Brent Strong
Brigham Young University

Brent Stucker
University of Rhode Island

Patricia L. Stumpf
Hartzell Propeller Inc.

Susan Sun
Kansas State University

Jerry Sundsrud
3M Company

John Taylor
Borden Chemical

Roland Thevenin
Airbus

L. Scott Thiebert
Air Force Research Laboratory

Rodney Thomson
CRC for Advanced Composites Structures Ltd.

Katie E.G. Thorp
Air Force Research Laboratory

Richard E. Tressler
Pennsylvania State University

Francois Trochu
Ecole Polytechnique de Montreal

Willem van Dreumel
Ten Cate Advanced Composites bv

Richard Van Luven
Northrup Grumman Corporation

Barry P. Van West
The Boeing Company

James Vaughan
University of Mississippi

Albert A. Vicario
Alliant Techsystems Inc.

Anthony J. Vizzini
University of Maryland

Shawn Walsh
Army Research Laboratory

Steve Wanthal
The Boeing Company

Stephen Ward
SW Composites

Charles R. Watson
Pratt & Whitney

Kevin Waymack
The Boeing Company

David Weiss
Eck Industries Inc.

Dan White
dmc2 Electronic Components Corporation

Mary Ann White
Alliant Techsystems Inc.

Paul D. Wienhold
Johns Hopkins University

J.L. Willet
USDA/ARS/NCAUR

Martin Williams
ADI Limited

Mark Wilhelm
The Boeing Company

D.J. Williamson
The Boeing Company

Dale W. Wilson
Johns Hopkins University

David Wilson
3M Company

Warren W. Wolf
Owens Corning

Ernest Wolff
PMIC

Hugh Yap
Aerocell Inc.

Chun Zhang
Florida State University
Contents

<table>
<thead>
<tr>
<th>Introduction to Composites</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chairpersons: Daniel B. Miracle and Steven L. Donaldson, Air Force Research Laboratory</td>
<td></td>
</tr>
</tbody>
</table>

Introduction to Composites

<table>
<thead>
<tr>
<th>A Brief History of Composite Materials</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Use Considerations</td>
<td>5</td>
</tr>
<tr>
<td>Technology Overview</td>
<td>7</td>
</tr>
<tr>
<td>Applications</td>
<td>12</td>
</tr>
<tr>
<td>View of the Future</td>
<td>16</td>
</tr>
</tbody>
</table>

Constituent Materials

<table>
<thead>
<tr>
<th>Chairperson: Steven R. Nutt, University of Southern California</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Introduction to Constituent Materials</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constituent Material Forms</td>
<td>21</td>
</tr>
<tr>
<td>Selection Factors</td>
<td>22</td>
</tr>
<tr>
<td>Introduction to Reinforcing Fibers</td>
<td>23</td>
</tr>
<tr>
<td>Overview</td>
<td>23</td>
</tr>
<tr>
<td>PMC Reinforcing Fibers</td>
<td>24</td>
</tr>
<tr>
<td>CMC and MMC Reinforcing Fibers</td>
<td>25</td>
</tr>
<tr>
<td>Summary and Conclusions</td>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Glass Fibers</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass Fiber Types</td>
<td>27</td>
</tr>
<tr>
<td>General-Purpose Glass Fibers</td>
<td>28</td>
</tr>
<tr>
<td>Special-Purpose Glass Fibers</td>
<td>29</td>
</tr>
<tr>
<td>Glass Melting and Fiber Forming</td>
<td>30</td>
</tr>
<tr>
<td>Important Commercial Products</td>
<td>31</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Carbon Fibers</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>History</td>
<td>35</td>
</tr>
<tr>
<td>Manufacture of Carbon Fibers</td>
<td>35</td>
</tr>
<tr>
<td>Properties and Characteristics of Carbon Fibers</td>
<td>36</td>
</tr>
<tr>
<td>Typical Applications of Carbon Fibers</td>
<td>38</td>
</tr>
<tr>
<td>Anticipated Developments in Carbon Fibers</td>
<td>39</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aramid Fibers</th>
<th>41</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiber Manufacturing</td>
<td>41</td>
</tr>
<tr>
<td>Fiber Forms and Applications</td>
<td>41</td>
</tr>
<tr>
<td>Materials Properties</td>
<td>43</td>
</tr>
<tr>
<td>Future Developments</td>
<td>45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ceramic Fibers</th>
<th>46</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiber Production</td>
<td>46</td>
</tr>
<tr>
<td>Composite Applications</td>
<td>46</td>
</tr>
<tr>
<td>Properties of Commercial Fibers</td>
<td>46</td>
</tr>
<tr>
<td>Fibers for High-Temperature CMC Applications</td>
<td>48</td>
</tr>
<tr>
<td>Future Directions</td>
<td>49</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Discontinuous Reinforcements for Metal-Matrix Composites</th>
<th>51</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reinforcement Roles</td>
<td>51</td>
</tr>
<tr>
<td>DRMCC Reinforcements</td>
<td>51</td>
</tr>
<tr>
<td>Reinforcement Chemistry</td>
<td>55</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Continuous Fiber Reinforcements for Metal-Matrix Composites</th>
<th>56</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum Oxide Fibers</td>
<td>56</td>
</tr>
<tr>
<td>Silicon Carbide Fibers</td>
<td>56</td>
</tr>
<tr>
<td>Boron Fibers</td>
<td>56</td>
</tr>
<tr>
<td>Carbon Fibers</td>
<td>56</td>
</tr>
<tr>
<td>Future Outlook</td>
<td>57</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fabrics and Preforms</th>
<th>59</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unidirectional and Two-Directional Fabrics</td>
<td>59</td>
</tr>
<tr>
<td>Hybrid Fabrics</td>
<td>60</td>
</tr>
<tr>
<td>Multidirectionally Reinforced Fabrics</td>
<td>60</td>
</tr>
<tr>
<td>Prepreg Resins</td>
<td>62</td>
</tr>
<tr>
<td>Woven Fabric Prepregs</td>
<td>63</td>
</tr>
<tr>
<td>Unidirectional Tape Prepregs</td>
<td>64</td>
</tr>
<tr>
<td>Multidirectional Tape Prepregs</td>
<td>65</td>
</tr>
<tr>
<td>Tape Manufacturing Processes</td>
<td>65</td>
</tr>
<tr>
<td>Prepreg Tow</td>
<td>66</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Braiding</th>
<th>69</th>
</tr>
</thead>
<tbody>
<tr>
<td>Braiding Classifications</td>
<td>70</td>
</tr>
<tr>
<td>Two-Dimensional Braiding</td>
<td>70</td>
</tr>
<tr>
<td>Three-Dimensional Braiding</td>
<td>72</td>
</tr>
<tr>
<td>Properties of Braided Composites</td>
<td>74</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Epoxy Resins</th>
<th>78</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Resins</td>
<td>78</td>
</tr>
<tr>
<td>Epoxy Resin Cure</td>
<td>80</td>
</tr>
<tr>
<td>Modifiers</td>
<td>84</td>
</tr>
<tr>
<td>Epoxy Resin Model Formulations</td>
<td>86</td>
</tr>
<tr>
<td>Safety</td>
<td>88</td>
</tr>
<tr>
<td>Future Trends</td>
<td>88</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Polyester Resins</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyester Resin Chemistry</td>
<td>90</td>
</tr>
<tr>
<td>Mechanical Properties</td>
<td>91</td>
</tr>
<tr>
<td>Chemical Resistance</td>
<td>93</td>
</tr>
<tr>
<td>Ultraviolet (UV) Resistance</td>
<td>94</td>
</tr>
<tr>
<td>Electrical Properties</td>
<td>94</td>
</tr>
<tr>
<td>Flame-Retardant Polyester Resins</td>
<td>95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bismaleimide Resins</th>
<th>97</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI Resin Chemistry</td>
<td>97</td>
</tr>
<tr>
<td>Bismaleimide Building Blocks</td>
<td>97</td>
</tr>
<tr>
<td>Bismaleimide Resin Systems</td>
<td>98</td>
</tr>
<tr>
<td>Conclusions</td>
<td>104</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BMI Composites</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical Properties</td>
<td>101</td>
</tr>
<tr>
<td>Composite Applications</td>
<td>101</td>
</tr>
<tr>
<td>Resin Transfer Molding</td>
<td>103</td>
</tr>
<tr>
<td>Cure and Post Cure Requirements</td>
<td>103</td>
</tr>
<tr>
<td>Elevated-Temperature Applications</td>
<td>103</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Polymide Resins</th>
<th>105</th>
</tr>
</thead>
<tbody>
<tr>
<td>Properties and Applications</td>
<td>105</td>
</tr>
<tr>
<td>Chemistry of Condensation-Type Polymides</td>
<td>107</td>
</tr>
<tr>
<td>Chemistry of Addition-Type Polymides</td>
<td>109</td>
</tr>
<tr>
<td>Preparation of Nadic End-Capped Amic Acid Oligomer Resin Solutions</td>
<td>112</td>
</tr>
<tr>
<td>Constituent Properties of PMR-15</td>
<td>113</td>
</tr>
<tr>
<td>Current State of the Art</td>
<td>113</td>
</tr>
<tr>
<td>Outlook</td>
<td>113</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phenolic Resins</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenolic Resin Chemistry</td>
<td>120</td>
</tr>
<tr>
<td>Phenolic Prepregs</td>
<td>121</td>
</tr>
<tr>
<td>Phenolic Honeycomb</td>
<td>121</td>
</tr>
<tr>
<td>Phenolic Pultrusion</td>
<td>122</td>
</tr>
</tbody>
</table>
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamentals of Shear Load Transfer through</td>
<td>281</td>
</tr>
<tr>
<td>Mechanical Fasteners</td>
<td>282</td>
</tr>
<tr>
<td>Single-Hole Bolted Composite Joints</td>
<td>284</td>
</tr>
<tr>
<td>Practical Considerations</td>
<td>286</td>
</tr>
<tr>
<td>Instability Considerations</td>
<td>290</td>
</tr>
<tr>
<td>Background</td>
<td>290</td>
</tr>
<tr>
<td>Orthotropic Plates</td>
<td>290</td>
</tr>
<tr>
<td>Finite Stack Effects</td>
<td>291</td>
</tr>
<tr>
<td>Anisotropic Plates</td>
<td>291</td>
</tr>
<tr>
<td>Unsymmetric Plates</td>
<td>292</td>
</tr>
<tr>
<td>Transverse Shear Stiffness Effects</td>
<td>292</td>
</tr>
<tr>
<td>Hygrothermal Buckling</td>
<td>293</td>
</tr>
<tr>
<td>Composite Sandwich Panels</td>
<td>293</td>
</tr>
<tr>
<td>Computer Codes</td>
<td>293</td>
</tr>
<tr>
<td>Shell Panel Instability</td>
<td>293</td>
</tr>
<tr>
<td>Damage Tolerance</td>
<td>295</td>
</tr>
<tr>
<td>Definitions</td>
<td>295</td>
</tr>
<tr>
<td>Durability and Damage Tolerance Criteria</td>
<td>295</td>
</tr>
<tr>
<td>Specific Criteria</td>
<td>295</td>
</tr>
<tr>
<td>Damage Tolerance Philosophy</td>
<td>296</td>
</tr>
<tr>
<td>Compression After Impact Failure Mode</td>
<td>297</td>
</tr>
<tr>
<td>Damage Tolerance Allowables Development</td>
<td>299</td>
</tr>
<tr>
<td>Implementation of a Damage Tolerance Analysis Methodology</td>
<td>300</td>
</tr>
<tr>
<td>Out-of-Plane Analysis</td>
<td>302</td>
</tr>
<tr>
<td>The Challenge</td>
<td>302</td>
</tr>
<tr>
<td>Out-of-Plane Analysis Techniques</td>
<td>303</td>
</tr>
<tr>
<td>Conclusion</td>
<td>306</td>
</tr>
<tr>
<td>Analysis of Sandwich Structures</td>
<td>308</td>
</tr>
<tr>
<td>Sandwich Panel Failure Modes</td>
<td>308</td>
</tr>
<tr>
<td>Nomenclature and Definitions for Loads, Geometry, and Material Properties</td>
<td>309</td>
</tr>
<tr>
<td>Strength Checks</td>
<td>309</td>
</tr>
<tr>
<td>Stiffness and Internal Loads</td>
<td>310</td>
</tr>
<tr>
<td>Flat Panel Internal Loads and Stresses—Pressure Loading</td>
<td>313</td>
</tr>
<tr>
<td>Curved Sandwich Panel Internal Loads and Stresses</td>
<td>316</td>
</tr>
<tr>
<td>Local Strength Analysis Methods</td>
<td>317</td>
</tr>
<tr>
<td>Flat Panel Stability Analysis Methods</td>
<td>319</td>
</tr>
<tr>
<td>Finite Element Analysis</td>
<td>321</td>
</tr>
<tr>
<td>Overview of Finite Element Analysis</td>
<td>321</td>
</tr>
<tr>
<td>Homogenization</td>
<td>322</td>
</tr>
<tr>
<td>3-D Solid Elements</td>
<td>323</td>
</tr>
<tr>
<td>2-D Cylindrical Shell Elements</td>
<td>324</td>
</tr>
<tr>
<td>1-D Beam Elements</td>
<td>326</td>
</tr>
<tr>
<td>Commercial Finite Element Analyses Codes</td>
<td>328</td>
</tr>
<tr>
<td>Numerical Examples</td>
<td>328</td>
</tr>
<tr>
<td>Computer Programs</td>
<td>334</td>
</tr>
<tr>
<td>Evaluation Criteria</td>
<td>334</td>
</tr>
<tr>
<td>Reviews of Available Programs</td>
<td>335</td>
</tr>
<tr>
<td>Internet Resources</td>
<td>343</td>
</tr>
<tr>
<td>Testing and Analysis Correlation</td>
<td>344</td>
</tr>
<tr>
<td>The “Building Block” Approach to Structural Qualification</td>
<td>344</td>
</tr>
<tr>
<td>Design Allowables Coupons</td>
<td>345</td>
</tr>
<tr>
<td>Bolted Joints</td>
<td>347</td>
</tr>
<tr>
<td>Elements and Subcomponents</td>
<td>349</td>
</tr>
<tr>
<td>Conclusions</td>
<td>351</td>
</tr>
<tr>
<td>Design Criteria</td>
<td>353</td>
</tr>
<tr>
<td>Overview of Design Criteria for Composites</td>
<td>353</td>
</tr>
<tr>
<td>Cost</td>
<td>354</td>
</tr>
<tr>
<td>Size</td>
<td>355</td>
</tr>
<tr>
<td>Mechanical Properties</td>
<td>355</td>
</tr>
<tr>
<td>Repeatability and Precision</td>
<td>357</td>
</tr>
<tr>
<td>Damage Tolerance and Durability</td>
<td>357</td>
</tr>
<tr>
<td>Environmental Constraints</td>
<td>358</td>
</tr>
<tr>
<td>Conclusions</td>
<td>358</td>
</tr>
<tr>
<td>Design Allowables</td>
<td>360</td>
</tr>
<tr>
<td>Need for Design Allowables</td>
<td>360</td>
</tr>
<tr>
<td>Development of Design Allowables</td>
<td>360</td>
</tr>
<tr>
<td>Factors Affecting Design Allowables</td>
<td>360</td>
</tr>
<tr>
<td>Lamina Versus Laminate Allowables</td>
<td>361</td>
</tr>
<tr>
<td>Extending Laminate Results</td>
<td>362</td>
</tr>
<tr>
<td>Statistical Determination of Allowables</td>
<td>363</td>
</tr>
<tr>
<td>Ensuring the Validity of Allowables</td>
<td>365</td>
</tr>
<tr>
<td>Computer-Aided Design and Manufacturing</td>
<td>366</td>
</tr>
<tr>
<td>Overview</td>
<td>366</td>
</tr>
<tr>
<td>Composite Draping Simulation</td>
<td>366</td>
</tr>
<tr>
<td>Composite Hierarchy</td>
<td>367</td>
</tr>
<tr>
<td>Core Sample and Ply Analysis</td>
<td>367</td>
</tr>
<tr>
<td>Productivity and Flat-Panel evaluations</td>
<td>368</td>
</tr>
<tr>
<td>Laminate Surface Offsets</td>
<td>368</td>
</tr>
<tr>
<td>Engineering Documentation</td>
<td>369</td>
</tr>
<tr>
<td>Flat-Panel Export</td>
<td>369</td>
</tr>
<tr>
<td>Structural Analysis Interface</td>
<td>370</td>
</tr>
<tr>
<td>Resin Transfer Molding Interface</td>
<td>371</td>
</tr>
<tr>
<td>Fiber Placement and Tape-Laying Interfaces</td>
<td>371</td>
</tr>
<tr>
<td>Laser Projection Interface</td>
<td>371</td>
</tr>
<tr>
<td>Design, Tooling, and Manufacturing Interaction</td>
<td>373</td>
</tr>
<tr>
<td>Selection of Composites Manufacturing Processes</td>
<td>373</td>
</tr>
<tr>
<td>Process Considerations</td>
<td>374</td>
</tr>
<tr>
<td>Preparation</td>
<td>374</td>
</tr>
<tr>
<td>Forming Processes</td>
<td>375</td>
</tr>
<tr>
<td>Post-Processing and Fabrication</td>
<td>376</td>
</tr>
<tr>
<td>Repair</td>
<td>377</td>
</tr>
<tr>
<td>Conclusions</td>
<td>377</td>
</tr>
<tr>
<td>Cost Analysis</td>
<td>379</td>
</tr>
<tr>
<td>Composite Cost Tools</td>
<td>379</td>
</tr>
<tr>
<td>Cost Savings</td>
<td>381</td>
</tr>
<tr>
<td>Rapid Prototyping</td>
<td>383</td>
</tr>
<tr>
<td>Review of Processes</td>
<td>383</td>
</tr>
<tr>
<td>Direct Fabrication of Composite Structures</td>
<td>385</td>
</tr>
<tr>
<td>Freeform Tooling for Composite Detail Lay-Up</td>
<td>386</td>
</tr>
<tr>
<td>Design Guidelines</td>
<td>388</td>
</tr>
<tr>
<td>Definition of Composites</td>
<td>388</td>
</tr>
<tr>
<td>Analysis of a Composite Laminate</td>
<td>389</td>
</tr>
<tr>
<td>Mold Design</td>
<td>391</td>
</tr>
<tr>
<td>Matrix-Resin Selection</td>
<td>391</td>
</tr>
<tr>
<td>Typical PMC Processes</td>
<td>391</td>
</tr>
<tr>
<td>Electromagnetic Interference (EMI) Shielding and Electrostatic Discharge (ESD) Protection</td>
<td>393</td>
</tr>
<tr>
<td>Metal Plating</td>
<td>393</td>
</tr>
<tr>
<td>Fire Resistance</td>
<td>393</td>
</tr>
<tr>
<td>Thermal Conductivity</td>
<td>394</td>
</tr>
<tr>
<td>Corrosion</td>
<td>395</td>
</tr>
<tr>
<td>Fasters</td>
<td>395</td>
</tr>
<tr>
<td>Engineering Mechanics and Analysis of Metal-Matrix Composites</td>
<td>396</td>
</tr>
<tr>
<td>Micromechanics of Fiber-Reinforced MMCs</td>
<td>396</td>
</tr>
<tr>
<td>Micromechanics of Discontinuously Reinforced MMCs</td>
<td>400</td>
</tr>
<tr>
<td>Local Failures of Fiber-Reinforced MMCs</td>
<td>401</td>
</tr>
<tr>
<td>Macromechanics</td>
<td>402</td>
</tr>
<tr>
<td>Fracture Toughness</td>
<td>403</td>
</tr>
<tr>
<td>Softwares</td>
<td>405</td>
</tr>
<tr>
<td>Fracture Analysis of Fiber-Reinforced Ceramic-Matrix Composites</td>
<td>407</td>
</tr>
<tr>
<td>Composites</td>
<td>407</td>
</tr>
<tr>
<td>General Framework for Fracture Analysis</td>
<td>408</td>
</tr>
<tr>
<td>Classes of Material Behavior</td>
<td>408</td>
</tr>
<tr>
<td>Constitutive Laws for Inelastic Straining</td>
<td>409</td>
</tr>
<tr>
<td>Stress Distributions in Notched Specimens</td>
<td>411</td>
</tr>
<tr>
<td>Fracture Initiation</td>
<td>412</td>
</tr>
<tr>
<td>Crack Propagation</td>
<td>413</td>
</tr>
<tr>
<td>Environmental Degradation</td>
<td>415</td>
</tr>
<tr>
<td>Conclusions</td>
<td>416</td>
</tr>
<tr>
<td>Manufacturing Processes</td>
<td>419</td>
</tr>
<tr>
<td>Chairperson: B. Tomas Aström, IFP SICOMP AB, Sweden</td>
<td></td>
</tr>
<tr>
<td>Introduction to Manufacturing of Polymer-Matrix Composites</td>
<td>421</td>
</tr>
<tr>
<td>Outlook</td>
<td>422</td>
</tr>
</tbody>
</table>
Quality Assurance of Metal-Matrix Composites .. 726
- Characterization Techniques .. 726
- Mechanical Testing ... 727
- Nondestructive Evaluation .. 728

Testing and Certification ... 731
Chairperson: Richard E. Fields, Lockheed Martin Missiles and Fire Control
- Introduction to Testing and Certification .. 733
- Section on Testing and Certification ... 733
- Overview of Testing and Certification ... 734
- Differences Between Testing of Composites and Testing of Isotropic Materials .. 734
- Involvement of Certification Agencies ... 734
- Understanding the Building-Block Approach 735
- Building-Block Levels ... 735
- Determining the Purposes of Testing ... 736
- Data Normalization ... 736
- Statistical Data Reduction ... 738

Test Program Planning .. 741
- Development of Test Matrices .. 741
- Testing Standards ... 742
- Specimen Preparation ... 743
- Environmental Conditioning .. 745
- Instrumentation and Data Acquisition ... 747
- Failure Modes .. 747
- Data Interpretation and Recording .. 747

Constituent Materials Testing ... 749
- Tests for Reinforcement Fibers and Fabrics 749
- Tests for Matrix Resins and Prepregs .. 751

Lamina and Laminate Nonmechanical Testing 759
- Per Ply Thickness ... 759
- Constituent Content ... 759
- Density .. 760
- Coefficient of Thermal Expansion and Coefficient of Moisture Expansion .. 760
- Glass Transition Temperature ... 761
- Thermal Conductivity, Diffusivity, and Specific Heat 762

Lamina and Laminate Mechanical Testing .. 766
- Failure Mode Analysis .. 766
- Tensile Property Test Methods .. 767
- Compressive Property Test Methods ... 769
- Shear Property Test Methods .. 772
- Flexure Property Test Methods .. 774
- Fatigue Test Methods ... 775
- Fatigue Property Test Methods ... 776

Element and Subcomponent Testing .. 778
- Test Methodology and Considerations .. 778
- Standard Elements .. 781
- Nonstandard Elements and Subcomponents 789

Durability and Damage-Tolerance Testing .. 790
- Full-Scale Structural Testing ... 790
- Static Test ... 794
- Durability (Fatigue) Test ... 795
- Damage Tolerance Test ... 798

Properties and Performance ... 801
Chairperson: Jeffrey Schaff, United Technologies Research Center
- Properties and Performance of Polymer-Matrix Composites 803
 - Materials and Properties Description ... 803
 - Axes Definitions, Symbols, and Special Property Calculations 805
 - Overview of Constituent Materials ... 806
 - Thermoplastic-Matrix Composites ... 807
 - Thermoset-Matrix Composites ... 807
- Properties of Metal-Matrix Composites .. 838
 - Discontinuously Reinforced MMCs .. 838
 - Continuous Fiber Reinforced Composites 848
- Properties of Ceramic-Matrix Composites 859
 - Continuous Fiber Ceramic Composites ... 862
 - Carbon-Carbon Composites ... 865

Product Reliability, Maintainability, and Repair 869
Chairpersons: Michael J. Hoke, Abaris Training Resources, Inc.
Rikard B. Heslehurst, Australian Defence Force Academy
- Introduction to Product Reliability, Maintainability, and Repair 871
 - Facilitating Effective Repair of Composite Structures 871
 - Repair Issues for Specific Applications ... 871
 - Repair Standardization and Reliability Considerations 871
- Designing for Repairability .. 872
 - Introduction to Designing for Repairability 872
 - Design Guidelines .. 874
 - Design for Supportability ... 880
 - Specific Examples .. 882
- Repair Engineering and Design Considerations 885
 - Types of Repairs to Composite Structures 885
 - Repair Requirements ... 885
 - Considerations Prior to, During, and After Repair Action 887
 - Validation and Certification of Repairs ... 888
 - Design Guidelines .. 889
 - Pitfalls and Problems .. 891
- Repair Applications, Quality Control, and Inspection 893
 - Types of Damage .. 893
 - Damage Detection in Field Conditions ... 893
 - Component Identification ... 894
 - Paint Removal .. 895
 - Repair Design ... 895
 - Repair Design Considerations .. 896
 - Repair Instructions ... 897
 - Repair Materials .. 897
 - Curing Methods ... 897
- Ship Structure Repairs ... 899
 - Repair Classification, Characterization, and Cycle 899
 - Repair to Gel Coats .. 900
 - Composite Patch Repairs ... 901
 - Scarf Repairs .. 901
 - Step Repairs .. 903
 - Resin-Infusion Repairs .. 904
- Rehabilitation of Reinforced Concrete Structures 906
 - Using Fiber-Reinforced Polymer Composites 906
 - Structural Assessment .. 906
 - Composite Materials Reinforcing Systems for Concrete Strengthening .. 907
- Properties of Polymer Composite Reinforcing Systems 908
 - Materials Property Requirements for Design 909
 - FRP-Reinforced Concrete Behavior .. 910
 - Surface Preparation .. 912
 - Composite Materials Applications ... 912
 - Records .. 912
 - Acceptance Criteria ... 912
- Maintainability Issues for Reinforced Ceramic-Matrix Composites 914
 - Types of Composite Structures ... 914
 - Designing for Maintainability ... 915
 - Sources of Defects and Damage ... 915
 - Nondestructive Inspection Requirements 916
 - Design Recommendations ... 917
 - Personnel, Facilities, and Equipment .. 918
- Bonded Repair of Metal Structures Using Composites 922
 - Damage Assessment ... 922
 - Repair Design .. 922
 - Repair Application ... 924
 - Repair Certification .. 926