Foreword

ASM International is proud to offer Composites as Volume 21 of the ASM Handbook. The nominal basis for this volume was the Engineered Materials Handbook, Volume 1, published in 1987. However, this new edition is, to a large degree, a brand new volume. New or greatly expanded coverage is provided, in particular, in the Sections on constituent materials, analysis and design, and processing. New sections have been added to address the important topics of maintenance, repair, and recycling. Coverage of polymer-matrix composites has been enhanced to address the latest materials advances and new application areas. Coverage of metal-matrix and ceramic-matrix composites has been revamped and greatly expanded to reflect the increasing industrial importance of these materials.

With the release of this new edition of the Composites volume, it seems like a natural transition for it to become part of the ASM Handbook series. The Metals Handbook series was renamed the ASM Handbook in the mid-1990s to reflect the increasingly interrelated nature of materials and manufacturing technologies. Since that time the ASM Handbook has incorporated increasing amounts of information about nonmetallic materials in each new and revised volume. ASM expects that other volumes in the Engineered Materials Handbook will become part of the ASM Handbook when they are revised.

Creating the new edition of this monumental reference work was a daunting task. We extend thanks and congratulations on behalf of ASM International to the Volume Chairs, Dan Miracle and Steve Donaldson, and the Volume’s 13 Section Chairs for the outstanding job they have done in developing the outline for the revision and guiding its development. Our gratitude is also due to the over 300 international experts from industry, academia, and research who contributed as authors and reviewers to this edition. In addition, we express our appreciation to the ASM International editorial and production staff for their dedicated efforts in preparing this volume for publication.

Aziz I. Asphahani
President
ASM International

Michael J. DeHaemer
Managing Director
ASM International
Policy on Units of Measure

By a resolution of its Board of Trustees, ASM International has adopted the practice of publishing data in both metric and customary U.S. units of measure. In preparing this Handbook, the editors have attempted to present data in metric units based primarily on Système International d’Unités (SI), with secondary mention of the corresponding values in customary U.S. units. The decision to use SI as the primary system of units was based on the aforementioned resolution of the Board of Trustees and the widespread use of metric units throughout the world.

For the most part, numerical engineering data in the text and in tables are presented in SI-based units with the customary U.S. equivalents in parentheses (text) or adjoining columns (tables). For example, pressure, stress, and strength are shown both in SI units, which are pascals (Pa) with a suitable prefix, and in customary U.S. units, which are pounds per square inch (psi). To save space, large values of psi have been converted to kips per square inch (ksi), where 1 ksi = 1000 psi. The metric tonne (kg) has sometimes been shown in megagrams (Mg). Some strictly scientific data are presented in SI units only.

To clarify some illustrations, only one set of units is presented on artwork. References in the accompanying text to data in the illustrations are presented in both SI-based and customary U.S. units. On graphs and charts, grids corresponding to SI-based units usually appear along the left and bottom edges. Where appropriate, corresponding customary U.S. units appear along the top and right edges.

Data pertaining to a specification published by a specification-writing group may be given in only the units used in that specification or in dual units, depending on the nature of the data. For example, the typical yield strength of steel sheet made to a specification written in customary U.S. units would be presented in dual units, but the sheet thickness specified in that specification might be presented only in inches.

Data obtained according to standardized test methods for which the standard recommends a particular system of units are presented in the units of that system. Wherever feasible, equivalent units are also presented. Some statistical data may also be presented in only the original units used in the analysis.

Conversions and rounding have been done in accordance with IEEE/ASTM SI-10, with attention given to the number of significant digits in the original data. For example, an annealing temperature of 1570 °F contains three significant digits. In this case, the equivalent temperature would be given as 855 °C; the exact conversion to 854.44 °C would not be appropriate. For an invariant physical phenomenon that occurs at a precise temperature (such as the melting of pure silver), it would be appropriate to report the temperature as 961.93 °C or 1763.5 °F. In some instances (especially in tables and data compilations), temperature values in °C and °F are alternatives rather than conversions.

The policy of units of measure in this Handbook contains several exceptions to strict conformance to IEEE/ASTM SI-10; in each instance, the exception has been made in an effort to improve the clarity of the Handbook. The most notable exception is the use of g/cm³ rather than kg/m³ as the unit of measure for density (mass per unit volume). SI practice requires that only one virgule (diagonal) appear in units formed by combination of several basic units. Therefore, all of the units preceding the virgule are in the numerator and all units following the virgule are in the denominator of the expression; no parentheses are required to prevent ambiguity.
Preface

It should be apparent with just a quick glance through this Volume that a great deal of technical progress has been made since the first edition was published in 1987 (as Engineered Materials Handbook, Volume 1). Much of the earlier promise of high performance organic-matrix composites (OMCs) has been fulfilled. These materials are now the preferred design solution for an expansive scope of applications. Earlier concerns related to high cost and marginal manufacturability have been satisfactorily addressed through high volume and innovative design and manufacturing, including extensive use of unitized design and construction. A clear example of the success in these areas is illustrated by the growing use of high-performance composites in the commodity applications of civil infrastructure. Nonetheless, cost and manufacturability continue to be areas of vigorous development and hold hope for significant future advancements, along with the development of composite materials with higher specific properties, higher operating temperatures, and improved supportability. One can expect to see broad advances in innovative structural concepts and certification methods in the future.

The progress in metal-matrix composites (MMCs) has been equally remarkable. Although only marginal coverage was warranted in the first edition, MMCs now represent a significant material option in the international marketplace. The world market for MMCs was over 2.5 million kg (5.5 million pounds) in 1999, and an annual growth rate of over 17% has been projected for the next several years. Significant applications are in service in the aeronautical, aerospace, ground transportation, thermal management/electronic packaging, and recreation industries. The ability to offer significant improvements in structural efficiency and to excel in several other functional areas, including thermal management and wear, and to utilize existing metalworking infrastructure have aided this progress. Continued future extension into both new and existing markets is expected.

While ceramic-matrix composite (CMC) technology is still largely centered in the research and development phase, significant advancements have been made. Some commercial applications now exist, and strategies for growing market insertion are being pursued. The traditional motivation of structural performance and environmental resistance at the highest application temperatures continue to provide incentive for development. Recent important research accomplishments provide growing optimism that significant aeropropulsion structural applications will be fielded in the coming decade.

The primary objective of ASM Handbook, Volume 21, Composites is to provide a comprehensive, practical, and reliable source of technical knowledge, engineering data, and supporting information for composite materials. Coverage of OMCs and MMCs is provided in a balanced fashion that reflects the maturity of each material class. Given the current status of CMC materials, less coverage is provided, but it, too, is focused in areas of current industrial importance. This Handbook is intended to be a resource volume for nonspecialists who are interested in gaining a practical working knowledge of the capabilities and applications of composite materials. Thus, coverage emphasizes well-qualified information for materials that can be produced in quantities and product forms of engineering significance. This Volume is not intended to be a presentation of fundamental research activities, although it certainly provides an important reference for scientists engaged in the development of new composite materials. The full range of information of importance to the practical technologist is provided in this Volume, including topics of constituent materials; engineering mechanics, design, and analysis; manufacturing processes; post-processing and assembly; quality control; testing and certification; properties and performance; product reliability, maintainability, and repair; failure analysis; recycling and disposal; and applications.

This new edition builds on the success of the version published as Volume 1 of the Engineered Materials Handbook. Information on OMCs has been updated to reflect advancements in this technology field, including improvements in low cost manufacturing technologies and significantly expanded applications in areas such as infrastructure. Progress in MMCs has been particularly dramatic since the previous edition, and new information on these materials provides an up-to-date comprehensive guide to MMC processing, properties, applications, and technology. CMCs also have entered service in limited applications since the previous edition, and the coverage of these materials reflects this progress. These three classes of composites are covered in each Section of the Volume as appropriate to provide a unified view of these engineered materials and to reduce redundancies in the previous edition.

We would like to offer our personal, heartfelt appreciation to the Section Chairpersons, article authors, reviewers, and ASM staff for sharing both their expertise and extensive efforts for this project.

Daniel B. Miracle
Steven L. Donaldson
Air Force Research Laboratory

Aziz I. Asphahani
President and Trustee
Carus Chemical Company

Gordon H. Geiger
Vice President and Trustee
University of Arizona

Michael J. DeHaemer
Secretary and Managing Director
ASM International

John W. Pridgeon
Treasurer
Allvac

Ash Khare
Immediate Past President and Trustee
National Forge Company

Subi Dinda
DaimlerChrysler Corporation

R.G. (Gill) Gilliland
Oak Ridge National Laboratory
UT-Battelle, LLC

Andrew R. Nicoll
Sulzer Metco Europe GmbH

Trustees

Thomas G. Stoebel
University of Washington

Robert C. Tucker, Jr.
Praxair Surface Technologies, Inc.

E. Daniel Albrecht
Advanced Ceramics Research, Inc.

W. Raymond Cribb
Alloy Products
Brush Wellman Inc.

Walter M. Griffith
Air Force Research Laboratory

Kathleen B. Alexander
Los Alamos National Laboratory

Members of the ASM Handbook Committee (2000–2001)

Craig V. Darragh
(Chair 1999–; Member 1989–)
The Timken Company

Dennis D. Huffman (1982–)
The Timken Company

Dwight Janoff (1995–)
FMC Corporation

Kent L. Johnson (1999–)
Engineering Systems Inc.

Paul J. Kovach (1995–)
Stress Engineering Services Inc.

Donald R. Lesuer (1999–)
Lawrence Livermore National Laboratory

Huimin Liu (1999–)
Ford Motor Company

William L. Mankins (1989–)
Metallurgical Services Inc.

Dana J. Medlin (1998–)
Zimmer Inc.

Srikanth Raghunathan (1999–)
Nanomat Inc.

Mahi Sahoo (1993–)
Natural Resources Canada

Karl P. Staudhammer (1997–)
Los Alamos National Laboratory

Kenneth B. Tator (1991–)
KTA-Tator Inc.

George F. Voort (1997–)
Buehler Ltd.

George A. Wildridge (2000–)
Borg Warner Morse TEC Corporation

Dan Zhao (1996–)
Johnson Controls Inc.

Previous Chairs of the ASM Handbook Committee

R.J. Austin
(1992–1994) (Member 1984–)

L.B. Case
(1931–1933) (Member 1927–1933)

T.D. Cooper

E.O. Dixon

R.L. Dowdell
(1938–1939) (Member 1935–1939)

M.M. Gauthier
(1997–1998) (Member 1990–)

J.P. Gill
(1937) (Member 1934–1937)

J.D. Graham

J.F. Harper
(1923–1926) (Member 1923–1926)

C.H. Herty, Jr.
(1934–1936) (Member 1930–1936)

D.D. Huffman (1986–1990) (Member 1982–)

J.B. Johnson (1948–1951) (Member 1944–1951)

G.V. Luerssen (1943–1947) (Member 1942–1947)

W.L. Mankins (1994–1997) (Member 1989–)

W.J. Merten (1927–1930) (Member 1923–1933)

D.J. Wright (1964–1965) (Member 1959–1967)
Authors and Contributors

R.C. Adams
Lockheed Martin Aeronautical Systems

Suresh Advani
University of Delaware

David E. Alman
U.S. Department of Energy

Finn Roger Andressen
Reichholds AS

Keith B. Armstrong
Consultant

B. Tomas Åström
IFP SICOMP AB

Amit Bandyopadhyay
Washington State University

Yoceph Bar-Cohen
Jet Propulsion Laboratory

Robert J. Basso
Century Design Inc.

Mark Battley
Industrial Research Limited

Joseph J. Beamana, Jr.
University of Texas at Austin

John H. Belk
The Boeing Company

Tia Benson Tolle
Air Force Research Laboratory

Barry J. Berenberg
Caldera Composites

John Bootle
XC Associates Inc.

Chris Boshers
Composite Materials Characterization Inc.

Richard H. Bossi
The Boeing Company

David L. Bourell
University of Texas at Austin

Dennis Bowles
Northrop Grumman Corporation

Jack Boyd
CyTech Fiberite Inc.

Maureen A. Boyle
Hexcel Corporation

Shari Bugaj
FiberCote Industries Inc.

Frank Burzesi
XC Associates Inc.

Flake C. Campbell
The Boeing Company

Karl K. Chang
DuPont

K.K. Chawla
University of Alabama

N. Chawla
Arizona State University

Eric Chesmar
United Airlines

Richard J. Chester
Aeronautical and Maritime Research Laboratory

S. Christensen
The Boeing Company

William F. Cole II
United Airlines

Bruce Crawford
Deakin University

George Dallas
TA Instruments

Joseph R. Davis
Davis & Associates

J.A. DiCarlo
NASA Glenn Research Center

Cynthia Powell Doğan
U.S. Department of Energy

Roderick Don
University of Delaware

Steven L. Donaldson
Air Force Research Laboratory

Louis C. Dorworth
Abaris Training Resources Inc.

Richard Downs-Honey
High Modulus New Zealand Limited

T.E. Drake
Lockheed Martin Aerospace

Lawrence T. Drzal
Michigan State University

G. Ehnert
Menzolit-Fibron GmbH

D. Emahiser
GKN Aerospace

Roger W. Engelbart
The Boeing Company

Don O. Evans
Cincinnati Machine

Richard E. Fields
Lockheed Martin Missiles and Fire Control

Lynda Fiorini
XC Associates Inc.

Gerald Flanagan
Materials Sciences Corporation

Mark S. Forte
Air Force Research Laboratory

Marvin Foston
Lockheed Martin Aeronautical Systems

Luther M. Gammon
The Boeing Company

C.P. Gardiner
Defence Science & Technology Organisation, Australia

Nicholas J. Gianaris
Visteon Corporation

Ian Gibson
The University of Hong Kong

Lawrence A. Gintert
Concurrent Technologies Corporation

Jonathan Goering
Albany International Techniweave Inc.

John W. Goodman
Material Technologies Inc.

J.H. Gosse
The Boeing Company

Michael N. Grimshaw
Cincinnati Machine

Olivier Guillermin
Vistagy Inc.

H. Thomas Hahn
Air Force Office of Scientific Research

Paul Hakes
High Modulus New Zealand Limited

William C. Harrigan
MMC Engineering Inc.

L.J. Hart-Smith
The Boeing Company

Brian S. Hayes
University of Washington

Dirk Heider
University of Delaware

Edmund G. Henneke II
Virginia Polytechnic Institute and State University

John M. Henshaw
University of Tulsa

G. Aaron Henson III
Design Alternatives Inc.
Reviewers

John W. Aaron
The Boeing Company

R.C. Adams
Lockheed Martin Aeronautical Systems

John C. Adelmann
Sikorsky Aircraft

Suresh Advani
University of Delaware

Suphal P. Agrawal
Northrop Grumman Corporation

Klaus Ahlborn
Miras Composites Systems

Bob Allanson
GKN Westland Aerospace

David P. Anderson
University of Dayton Research Institute

Donald A. Anderson
The Boeing Company

Douglas L. Armstrong
Fiber Innovations Inc.

Keith B. Armstrong
Consultant

B. Tomas Åström
IFP SICOMP AS

Mohan Aswani
Mark Battley
Industrial Research Limited, New Zealand

Behzad Bavarian
California State University, Northridge

Matthew R. Begley
University of Connecticut

Arie Ben-Dov
Israel Aircraft Industry

Tia Benson Tolle
Air Force Research Laboratory

Albert Bertram
Naval Research Laboratory

Edward Bernardon
Vistagay Inc.

R.T. Bhatt
NASA Glenn Research Center

Greg Black
Northrop Grumman Corporation

Tom Blankenship
The Boeing Company

George A. Blann
Buehler Ltd.

Ben R. Bognar
BP Amoco Chemicals

Gregg R. Bogucki
The Boeing Company

Raymond Bohlmann
The Boeing Company

Collin Bohn
The Boeing Company

Chris Bosher
Composite Materials Characterization Inc.

Dennis Bowles
Northrop Grumman Corporation

Alfonso Branca
Top Glass s.p.a.

Mike Brun
General Electric

Doug Brunner
Lockheed Martin

Bruce L. Burton
Huntsman Corporation

Mark Bush
University of Western Australia

Rick Callis
Hexcel Corporation

Flake C. Campbell
The Boeing Company

Gene Camponeschi
NSWCCD

Jay Carpenter
Creative Tooling

Mark T. Carroll
Lockheed Martin Aeronautics

Patrick E. Cassidy
Southwest Texas State University

Gilbert B. Chapman II
DaimlerChrysler Corporation

K.K. Chawla
University of Alabama

N. Chawla
Arizona State University

Judy Chen
The Boeing Company

Richard J. Chester
Aeronautical and Maritime Research Laboratory

Mark Chris
Bell Helicopter Textron

Stan Chichanoski
Steinerfilm Inc.

Bruce Choate
Northrop Grumman Corporation

Linda L. Clements
C & C Technologies

Todd Coburn
Adroit Engineering

William F. Cole II
United Airlines

Doug Condel
John Cooney

Bruce Cox
DaimlerChrysler Corporation

Jim Criss
Lockheed Martin Aeronautics

Alan Crosky
University of New South Wales

Maxwell Davis
J.G. Dean
Lockheed Martin

Thomas J. Dearlove
General Motors Corporation

Leen Deurloo
Adzel bv

Herve Deve
3M Company

José Manuel Luna Díaz
EADS-CASA Airbus

George DiBari
International Nickel

Jack Dini
Consultant

John Dion
BAE Systems

Alan Dobyns
Sikorsky Aircraft

Jim Door
Duke Engineering

Louis C. Dorworth
Abaris Training Resources Inc.

Timothy E. Easler
COI Ceramics Inc.

Jim Epperson
Jay Fiebig
Warner Robins Air Logistics Center
ASM International is the society for materials engineers and scientists, a worldwide network dedicated to advancing industry, technology, and applications of metals and materials.

ASM International, Materials Park, Ohio, USA
www.asminternational.org

This publication is copyright © ASM International®. All rights reserved.

<table>
<thead>
<tr>
<th>Publication title</th>
<th>Product code</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASM HB, Vol. 21, Composites</td>
<td>#06781G</td>
</tr>
</tbody>
</table>

To order products from ASM International:

Online Visit www.asminternational.org/bookstore

Telephone 1-800-336-5152 (US) or 1-440-338-5151 (Outside US)

Fax 1-440-338-4634

Mail Customer Service, ASM International
9639 Kinsman Rd, Materials Park, Ohio 44073-0002, USA

Email CustomerService@asminternational.org

American Technical Publishers Ltd.
27-29 Knowl Piece, Wilbury Way, Hitchin Hertfordshire SG4 0SX, United Kingdom

Telephone: 01462 437933 (account holders), 01462 431525 (credit card)
www.ameritech.co.uk

Neutrino Inc.

In Japan Takahashi Bldg., 44-3 Fuda 1-chome, Chofu-Shi, Tokyo 182 Japan
Telephone: 81 (0) 424 84 5550

Terms of Use. This publication is being made available in PDF format as a benefit to members and customers of ASM International. You may download and print a copy of this publication for your personal use only. Other use and distribution is prohibited without the express written permission of ASM International.

No warranties, express or implied, including, without limitation, warranties of merchantability or fitness for a particular purpose, are given in connection with this publication. Although this information is believed to be accurate by ASM, ASM cannot guarantee that favorable results will be obtained from the use of this publication alone. This publication is intended for use by persons having technical skill, at their sole discretion and risk. Since the conditions of product or material use are outside of ASM's control, ASM assumes no liability or obligation in connection with any use of this information. As with any material, evaluation of the material under end-use conditions prior to specification is essential. Therefore, specific testing under actual conditions is recommended.

Nothing contained in this publication shall be construed as a grant of any right of manufacture, sale, use, or reproduction, in connection with any method, process, apparatus, product, composition, or system, whether or not covered by letters patent, copyright, or trademark, and nothing contained in this publication shall be construed as a defense against any alleged infringement of letters patent, copyright, or trademark, or as a defense against liability for such infringement.