The History of Stainless Steel

Harold M. Cobb
The History of Stainless Steel
is dedicated to my dear wife
Joan Inman Cobb
Front Cover

The Chrysler Building, erected in New York City in 1930, was once the tallest building in the world, being almost twice as high as the Washington Monument. It is widely acclaimed as the finest skyscraper, with its art deco style and the ornate tower that is clad with stainless steel.

The Chrysler Building was the first major use of stainless steel in architecture. The Nirosta chromium-nickel alloy had first been introduced in America just three years earlier, and the long-term endurance of the metal in the atmosphere was unknown. The building has become an icon of the stainless steel industry, a symbol of endurance and beauty, and a favorite of architects.

The photograph was taken by Ms. Catherine M. Houska, TMR Stainless, Pittsburgh, Pennsylvania, for the Nickel Development Association, Toronto, Ontario, Canada.

Inside Front Cover

Inside Back Cover

Back Cover

Top. At a height of 630 feet, the Gateway Arch in St. Louis, Missouri, is the world's tallest monument, which surpassed the 555 foot height of the Washington Monument. With an exterior of stainless steel, the shape of the arch is that of an inverted catenary (or the shape of a chain dangling from two points at the same level). Courtesy of the Jefferson National Expansion Memorial National Park Service, St. Louis, Missouri.

Bottom. The Ford Tudor, one of six Ford Deluxe sedans manufactured by Allegheny Ludlum in 1935 to demonstrate the formability of 18-8 stainless steel and to show its beauty.
Contents

List of Tables and Figures ... ix
Preface .. xvii
Acknowledgments ... xix
Credits .. xxi
About the Author .. xxiii

CHAPTER 1 Introduction ... 1

CHAPTER 2 The Early Discoveries .. 7
- The Discovery of Chromium (1797) .. 8
- Michael Faraday Pioneers the Alloying of Steel (1820) 8
- Iron-Chromium Alloys and the Production of Ferrochromium (1821) ... 10
- Woods and Clark Describe an Acid- and Weather-Resistant Alloy (1872) ... 11
- Discoveries in the 1890s ... 11
- The Discovery of Martensitic and Ferritic Chromium Stainless Steels (1904) ... 12
- The Discovery of the Chromium-Nickel Austenitic Stainless Steels (1906) ... 13
- The Discovery of Corrosion Resistance (1908) 13
- Another Important Ferritic Chromium Stainless Steel Is Discovered (1911) ... 14

CHAPTER 3 Discoveries of the Commercial Usefulness of Stainless Steel ... 17
- Usefulness of a Martensitic Chromium Stainless Steel Discovered in England and America (1911–1912) 17
CHAPTER 8 Edward G. Budd (1870–1946), Inventor and Entrepreneur

<table>
<thead>
<tr>
<th>Subchapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Early Years</td>
<td>123</td>
</tr>
<tr>
<td>The Automobile Body Business</td>
<td>125</td>
</tr>
<tr>
<td>A New Kind of Stainless Steel Arrives in America</td>
<td>127</td>
</tr>
<tr>
<td>Earl Ragsdale’s Shot Weld Patent</td>
<td>129</td>
</tr>
<tr>
<td>The World’s First Stainless Steel Airplane—The Pioneer</td>
<td>131</td>
</tr>
<tr>
<td>The World’s First Stainless Steel Rubber-Tired Train</td>
<td>134</td>
</tr>
<tr>
<td>The Burlington Zephyr</td>
<td>138</td>
</tr>
<tr>
<td>The Flying Yankee</td>
<td>147</td>
</tr>
<tr>
<td>The Mark Twain Zephyr</td>
<td>154</td>
</tr>
<tr>
<td>Transit and Trucking</td>
<td>155</td>
</tr>
<tr>
<td>The War Years</td>
<td>156</td>
</tr>
<tr>
<td>The Postwar Years</td>
<td>160</td>
</tr>
<tr>
<td>A Review of the Budd Era</td>
<td>166</td>
</tr>
</tbody>
</table>

CHAPTER 9 The Gateway Arch

- 171

CHAPTER 10 History of Stainless Steel Melting and Refining

- 175
 - The Wild Process | 176
 - The Rustless Process | 176
 - The Linde Argon-Oxygen Decarburization (AOD) Process | 178

CHAPTER 11 Two New Classes of Stainless Steel

- 185
 - Duplex Stainless Steel | 185
 - Precipitation-Hardening Steel | 189

CHAPTER 12 Stainless Steel Applications

- 193
 - Household Products | 193
 - Food Handling | 197
 - Architecture | 199
 - Aircraft | 000
 - Automobiles | 000
 - Trains | 000

CHAPTER 13 Canada Restores a Fleet of Stainless Steel Railcars

- 229

CHAPTER 14 The Plummer Classification System of Trade Names

- 231
List of Tables and Figures

Tables

Table 1 Wrought stainless steel AISI designations listed in *The Book of Stainless Steels*, edited by E. Thum (ASM, 1935) 86
Table 2 Cast stainless steel designations listed in *The Book of Stainless Steels*, edited by E. Thum (ASM, 1935) 87
Table 3 Example of the Plummer classification system for alloys with 16 to 23% chromium, 7 to 11% nickel, and 0.13 to 0.20% carbon .. 233
Table 4 Primary series of Unified Numbering System (UNS) numbers ... 238
Table 5 Examples of Unified Numbering System (UNS) designations ... 239
Table 6 Comparable designations for type 304 stainless steel 245

Captions for Numbered Figures

Fig. 1 Five discoverers. Source: Zapffe, 1949 ... 9
Fig. 2 Six pioneers. Source: Zapffe, 1949.. 18
Fig. 3 Harry Brearley. Source: Copyright. Sheffield Industrial Museums Trust. Reprinted with permission 19
Fig. 4 Benno Strauss, who promoted the industrial application of chromium-nickel austenitic steels that he developed with Eduard Maurer at Krupp laboratories from 1909 to 1912. Source: Thum, 1933, p 374... 27
Fig. 5 P.A.E. Armstrong, who developed silicon-chromium steels used for gas engine exhaust valves. Source: Thum, 1933, p 486 27

Fig. 6 Early Firth advertisement (1915). Designed by Evelyn D. Roberts, Pittsfield, New Hampshire ... 29

Fig. 7 Text excerpts from Brearley’s 1916 patent of a stainless steel .. 44

Fig. 8 Elwood Haynes, who was a pioneer American automobile maker and an inventor of a series of complex alloys from 1907 to 1913 when searching for durable spark plug alloys. Courtesy of the Elwood Haynes Museum, Kokomo, Indiana .. 48

Fig. 9 Text excerpts from the 1919 stainless steel patent of Elwood Haynes ... 49

Fig. 10 Stainless steel cutlery illustrated in the book Firth-Sterling “S-Less” Stainless Steel, published by Firth-Sterling Steel Co., McKeesport, Pennsylvania, 1923 .. 64

Fig. 11 Surgical and dental instruments illustrated in the Firth-Sterling book, 1923 .. 65

Fig. 12 Golf clubs illustrated in the Firth-Sterling book, 1923 ... 66

Fig. 13 Stainless steel turbine blading illustrated in Firth-Sterling book, 1923 70

Fig. 14 Chart from Parmiter showing the effect of quenching (hardening) on the stain resistance (comparative efficiency in percent) of chromium cutlery steels. Source: Thum, 1935, p 288 71

Fig. 15 Prominent contributors in the early developments of stainless steels. Source: Zapffe, 1949, p 22 .. 73

Fig. 16 Percentages of chromium and nickel required to produce an austenitic alloy. Source: B. Strauss, Non-Rusting Stainless Steels, Proceedings of the American Society for Testing Materials, 1924, p 208–216 .. 74

Fig. 17 Ernest E. Thum, first editor of Metal Progress and editor of The Book of Stainless Steels ... 76

Fig. 18 Table of contents from the second edition of The Book of Stainless Steels, American Society for Metals, 1935 77

Fig. 19 Carl Zapffe, who authored Stainless Steels (1949) and coined the term fractography from his original work on the microscopic examination of fracture surfaces. 1968 photo. Courtesy of the Zapffe family .. 88

Fig. 20 Effect of chromium on corrosion and oxidation resistance of
steel. (a) Iron-chromium alloys exposed for 10 years to corrosion
and rusting in an industrial atmosphere. (b) Oxidation penetration
of ½ inch cubes exposed to air for 48 hours at 1000 °C. Source:
Zapf, 1949, p 31, 32 ... 90

Fig. 21 Walter P. Chrysler .. 102

Fig. 22 Latticed framework of the spire and needle of the Chrysler
Building. After the lattice was raised from within the building, a
scaffold was built around it, so that workers could start affixing the
stainless steel panels. Reprinted with permission from David Stravitz,
Ed., The Chrysler Building: Building a New York Icon a Day at a
Time, Princeton Architectural Press, New York, 2002 112

Fig. 23 Stainless steel sections on the Chrysler Building. Photo taken
on June 20, 1930, by the builder Fred T. Ley & Co., Inc. Reprinted
with permission from David Stravitz, Ed., The Chrysler Building:
Building a New York Icon a Day at a Time, Princeton Architectural
Press, New York, 2002 .. 113

Fig. 24 Chrysler Building (same photo as cover). Courtesy of
Catherine M. Houska, TMR Stainless, and the Nickel Development
Institute .. 114

Fig. 25 Nirosta (18-8) stainless steel eagle on the 61st floor of the
Chrysler Building in winter 1929–1930. Photo taken by the famous
photographer Margaret Bourke-White, whose studio was just behind
the eagle. Reprinted with permission from David Stravitz, Ed., The
Chrysler Building: Building a New York Icon a Day at a Time,
Princeton Architectural Press, New York, 2002 120

Fig. 26 Edward Gowan Budd. Courtesy of the Hagley Museum and
Library .. 124

Fig. 27 Cross section of shot weld specimens of 18-8 stainless steel with
(left) inadequate fusion due to insufficient heating, (middle) correct
heating and fusion, and (right) excessive heating with carbide
precipitation in the heat-affected zone of the weld. Source: E.J.
Ragsdale, To Weld 18-8 Minimize Time at Heat, Metal Progress,
Feb. 1933, p 26 ... 128

Fig. 28 Budd Pioneer amphibian plane. Reprinted with permission
of the Franklin Institute ... 132

Fig. 29 The Budd-Michelin rubber-tired train, purchased by the
Reading Company, was officially named Rail Motor Car 65. Source:
Thum, The Book of Stainless Steels, 1935, p 429 137
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 30</td>
<td>The Burlington Zephyr under construction. Courtesy of the Hagley Museum and Library.</td>
</tr>
<tr>
<td>Fig. 31</td>
<td>The Burlington Zephyr outside the factory. Courtesy of the Hagley Museum and Library.</td>
</tr>
<tr>
<td>Fig. 32</td>
<td>Flying Yankee in Nashua, New Hampshire, March 1935. Courtesy of Brian McCarthy, President, Flying Yankee Restoration Group, Inc.</td>
</tr>
<tr>
<td>Fig. 33</td>
<td>Coach cars. (a) Mark Twain Zephyr. Courtesy of the Hagley Museum and Library. (b) Flying Yankee. Courtesy of Brian McCarthy, President, Flying Yankee Restoration Group, Inc.</td>
</tr>
<tr>
<td>Fig. 34</td>
<td>Observation cars. (a) Mark Twain Zephyr. Courtesy of the Hagley Museum and Library. (b) Flying Yankee. Courtesy of Brian McCarthy, President, Flying Yankee Restoration Group, Inc.</td>
</tr>
<tr>
<td>Fig. 35</td>
<td>Budd RB-1 Conestoga cargo plane. Courtesy of the Hagley Museum and Library.</td>
</tr>
<tr>
<td>Fig. 36</td>
<td>The first stainless steel aircraft built by the Budd Manufacturing Company on display in front of the Franklin Institute Museum in Philadelphia, Pennsylvania. Courtesy of Craig Clauser.</td>
</tr>
<tr>
<td>Fig. 37</td>
<td>The Gateway Arch. Courtesy of the Jefferson Expansion Memorial Park.</td>
</tr>
<tr>
<td>Fig. 38</td>
<td>Six ton Heroult-type furnace. Source: A.L. Feild, Manufacture of Stainless Iron from Ferrochromium, from Scrap, or from Ore, Metal Progress, Feb. 1933, p 15.</td>
</tr>
<tr>
<td>Fig. 39</td>
<td>Microstructure of a martensitic stainless steel (type 410; UNS number S41000). (a) Annealed. (b) Tempered after hardening.</td>
</tr>
<tr>
<td>Fig. 40</td>
<td>Microstructure of two ferritic stainless steels. (a) Type 409 (UNS number S40900) muffler-grade strip in annealed condition. (b) Type 430 (UNS number S43000) annealed strip.</td>
</tr>
<tr>
<td>Fig. 41</td>
<td>Microstructure of 304 austenitic stainless steel from three specimens of a fabricated part from welded strip. (a) Annealed location that was unaffected by processing. (b) Region with slip bands caused by roll forming. (c) Heat-affected weld zone with carbides in the grain boundaries. Source: Atlas of Microstructures of Industrial Alloys, Volume 7, Metals Handbook, 8th ed., American Society for Metals, 1972, p 135.</td>
</tr>
<tr>
<td>Fig. 42</td>
<td>Microstructure of two duplex stainless steels. (a) Solution treated and aged 7-Mo (Fe; <0.1 C; 27.5 Cr; 1.5 Ni; 1.5 Mo). Ferrite is light</td>
</tr>
</tbody>
</table>
gray; sigma phase is dark; austenite is the whitest shade. (b) Type 2205 duplex wrought stainless steel (UNS number S31803). Ferrite (darker) and austenite (white). Composition is balanced to produce approximately equal amounts of ferrite and austenite at room temperature. Courtesy of Buehler Ltd. 190

Fig. 43 Microstructure of precipitation-hardening (PH) stainless steels. (a) Martensitic PH stainless steel type 15-5 PH (UNS number S15500) in solution-treated and aged condition. (b) Semiaustenitic PH stainless steel type 17-7 PH (UNS number S17700) in solution-treated and aged condition. (c) Austenitic PH stainless steel type A286 (UNS number S66286) in annealed condition 192

Fig. 44 Stainless steel Oneida tableware circa late 1960s. Courtesy of D. Gymbruch ... 195

Fig. 45 U.S. Steel display of stainless steel kitchenware at the Century of Progress exhibition during the 1933–1934 Chicago Centennial Exposition ... 196

Fig. 46 Milk truck with a 2700 gallon tank lined with 18-8 stainless steel. Source: Food Handling Advances, U.S. Steel, 1935 199

Fig. 47 The canopy of the Hotel Savoy. Courtesy of the Nickel Development Institute (1999, Catherine Houska) .. 200

Fig. 48 Arcs of the Chrysler Building. Courtesy of the Nickel Development Institute (Tim Pelling) .. 201

Fig. 49 Entrance to the Chrysler Building. Courtesy of the Nickel Development Institute (1996, Catherine Houska) 202

Fig. 50 Stainless steel spandrel panels on the Empire State Building. (a) Undated photo from the 1930s. (b) 1996 (Catherine Houska) 203

Fig. 51 150 East 42nd Street (formerly the Socony-Mobil Building) in New York City. Courtesy of the Nickel Development Institute (1996, Catherine Houska) .. 205

Fig. 52 First cleaning of the Socony-Mobil Building in 1995. Courtesy of J&L Specialty Steel ... 206

Fig. 53 Ford Tudor stainless sedan .. 225

Caption for Unnumbered Figure in Chapter 6

Chart of high-temperature scaling of steels in Marble’s 1920 paper on stainless steels ... 96
Captions for Photographic Insert

Fig. A Latticelike exterior on the IBM Buildings in Pittsburgh, Pennsylvania (Five Gateway Center). The loaded bearing trusses are sheathed with sheets of stainless steel. Architects: Cutis and Davis, New Orleans. Source: New Horizons in Architecture with Stainless Steel, American Iron and Steel Institute, 1965, with permission...207

Fig. B Water tower at General Motors Technical Center, Warren, Michigan. Constructed from stainless-clad structural steel plate (\(\frac{1}{16}\) inch stainless steel on \(\frac{3}{8}\) inch structural steel plate). Associated architects: Eero Saarinen; Smith, Hinchman, and Grylls. Photo: Baltazar Korab. Source: New Horizons in Architecture with Stainless Steel, American Iron and Steel Institute, 1965, with permission...208

Fig. C Water intake gate structures at Niagara Power Project, Niagara Falls, New York. The 100 foot high structure was sheathed with stainless steel. Source: New Horizons in Architecture with Stainless Steel, American Iron and Steel Institute, 1965, with permission........209

Fig. D Pittsburgh Civic Arena, Pittsburgh, Pennsylvania. When constructed, it had the world’s largest dome and retractable roof. There are no interior supports. The stainless steel dome is 415 feet (126 meters) in diameter and consists of 7800 pieces of stainless steel that were joined with flat lock-and-batten seams to form eight movable leaves of the dome roof, which can be opened in two minutes. Courtesy of the Pittsburgh Civic Arena...............................210

Fig. E Elephant & Castle Substation, Newington Causeway, London. Curtain wall of type 316 stainless steel exterior wall panels with a pressed pattern. Courtesy of the Nickel Development Institute (1999, Catherine Houska)..211

Fig. F Kearns Communications Group Building, Dayton, Ohio, in 1999. Two sides of the building have type 304 stainless steel curtain walls with no windows. The other two sides are glass curtain walls and doors with solid stainless steel framing. Courtesy of Edward Madden, Kearns Communications Group.................................211

Fig. G Enfield Civic Centre, Enfield Borough, Middlesex, United Kingdom, in 1999. Stainless steel exterior cladding is type 316 with either a bright annealed or an embossed finish. Courtesy of the Nickel Development Institute (1999, Catherine Houska)........212
Fig. H Pier Pavilion, Herne Bay, Kent, United Kingdom, in 1999. This two- and three-story sports center on the end of an ocean pier has corrugated external type 316 stainless steel cladding. Courtesy of the Nickel Development Institute (1999, Catherine Houska)........213

Fig. I ICI Building, North York, Ontario, Canada, in 1981. Type 304 stainless steel panel for the curtain wall and four revolving door entrances...213

Fig. J Sun Life Centre, Toronto, Ontario, Canada, in 1999. Curtain wall is type 304 stainless steel face panels with a thickness of 0.06 inches (1.5 millimeters). Courtesy of the Nickel Development Institute (1999, Catherine Houska)..214

Fig. K Michael Fowler Centre, Wellington, New Zealand, in 2000. Curved stainless steel panels cover the top and bottom of the protruding circular center of the building. There are also vertical stainless steel sunshades between the windows. Courtesy of the Nickel Development Institute (1999, Catherine Houska)........215

Fig. L Statue of Genghis Khan fabricated of 250 tons of stainless steel. Located 54 kilometers from Ulaanbaatar, Mongolia, this statue is 131 feet tall. ...216

Fig. M Cloud Gate sculpture by Anish Kapoor in Millennium Park, Chicago, Illinois ...217

Fig. N Stainless steel entrance door designed and executed by Oscar Bach. Plaques represent industries of mining, smelting, fabrication, machining, building, and transportation. Top right plaque in color represents fabrication. Source: Metal Progress, June 1936, p 36218

Fig. O Dramatic façade of Federal Savings and Loan Association in Brookfield, Illinois. Exterior columns are sheathed in stainless steel, and the building is accented by stainless steel mullions. Source: New Horizons in Architecture with Stainless Steel, American Iron and Steel Institute, 1965, with permission219

Fig. P Escalator, referred to as a “new electric stairway,” uses bright stainless steel stringers, railings, and posts. Sears, Roebuck and Company store in Atlanta, Georgia. Source: New Horizons in Architecture with Stainless Steel, American Iron and Steel Institute, 1965, with permission ...220

Fig. Q Stainless steel stairwell with single stringer and cantilevered steps. Architects: Daniel Badani, Michael Folliasson, Abro Kandjian, and Pierre Roux-Dorlut. Photo: Baltazar Korab. Source: New Horizons in Architecture with Stainless Steel, American Iron and Steel Institute, 1965, with permission ..221
What is stainless steel? The average person has no inkling, but it is all around us, and readers will be surprised to learn some of the stories of this remarkable material that one prominent metallurgist called “the miracle metal.”

Every day, most of us use stainless steel tableware and wear a wrist-watch with a stainless steel case and band. There are stainless steel racks in refrigerators and ovens, and there are stainless steel toasters, tea kettles, and even kitchen sinks. Cars have stainless steel exhaust systems that last for ten years instead of three when they were made of ordinary steel.

The amazing story is told of Harry Brearley, who rose from poverty, became a self-taught metallurgist, was one of the early discoverers of stainless steel, and received the Bessemer Gold Medal.

In the early days of stainless steel, the metal was often used when the goal was to produce the finest, the most durable, and the most beautiful product that money could buy. The Rolls-Royce Motor Car Company, for example, was one of the first to use stainless steel on an automobile. Their 1929 car displayed the most striking radiator grille imaginable in silvery stainless steel.

In America in 1930, the office building of automaker Walter P. Chrysler opened in New York City. The Chrysler Building was the tallest and most ornate skyscraper in the world. The top 100 feet of the tower was clad in Nirosta stainless steel, making it the most beautiful and most visible building on the New York City skyline.

In 1934, a Philadelphia autobody company tried their hand at building a stainless steel train for the Chicago, Burlington, & Quincy Railroad. It was a streamlined, lightweight, luxurious, silvery train that
became the world’s fastest. It traveled 3.2 million miles in 25 years and is now on display at the Chicago Museum of Science and Industry.

Eero Saarinen designed the St. Louis Gateway Arch, which was completed in 1965. The 630 foot, stainless-clad arch is the tallest monument. Saarinen wanted the arch to last for a thousand years.

Stainless steel was an expensive material, costing as much as 15 times that of ordinary steel. The story is told of how one young metallurgist in 1970 discovered, in the laboratory, a process that would cut the cost of stainless steel in half and produce better steel. The other part of the story was that it took 12 years to discover how to develop the process for large-scale production.

How it was possible for things like these to happen and the story of how stainless steels were discovered are explained in this first history of stainless steel. Stainless steels have become the third most widely used metals, following aluminum and steel.

Harold M. Cobb
Kennett Square, Pennsylvania
March 2009
Acknowledgments

The author wishes to acknowledge the kind assistance of many individuals and organizations that have been most helpful over a ten-year period in compiling *The History of Stainless Steel*.

Many thanks to Harry W. Weisheit, retired, The Budd Railcar Division, for files of the Railcar Division of the E.G. Budd Manufacturing Co., now of Lansdale, Pennsylvania; R. David Thomas, deceased, former President of Arcos Corp., Philadelphia, Pennsylvania; James D. Redmond, Technical Marketing Resources, Inc., Pittsburgh, Pennsylvania; Ronald Bailey, Plate Division, Allegheny Technologies, Brackenridge, Pennsylvania; Harry E. Lunt, deceased, Burns & Roe, Mendham, New Jersey; and Hubert Langehenke, DIN VDEh, Dusseldorf, Germany.

Many thanks to Alan Harrison, Roger L. Crookes, and David Humphreys, Stainless Steel Advisory Service of the British Stainless Steel Association (BSSA), Sheffield, United Kingdom; William J. Schumacher, A-K Steel Corporation, Middletown, Ohio; Matti Paju, AvestaPolarit, Sweden; Susan Scott, Hotel Savoy, London; David Gymburch, Oneida Ltd., Oneida, New York; The Franklin Institute, Philadelphia, Pennsylvania; The Hagley Museum, Wilmington, Delaware; Valerie Parr, the Kelham Island Industrial Museum, Sheffield, United Kingdom; Louise Fairweather, Outokumpu, Sheffield, United Kingdom; Margaret Lawler, American Society for Testing and Materials International (ASTM), W. Conshohocken, Pennsylvania; and Eleanor Baldwin, ASM International, Materials Park, Ohio. My sincere appreciation also to Catherine M. Houska, TMR Stainless, Pittsburgh, Pennsylvania; Gary E. Coates, Nickel Institute, Toronto, Canada; Evelyn D. Roberts, Pittsfield, New Hampshire; and Kathleen
Moenster, Librarian, Jefferson National Expansion Park, St. Louis, Missouri.

Special thanks to Sonia S. Ralston, Kennett Square, Pennsylvania. The author is indebted to John P. Moran, retired, G.O. Carlson Co., Burlingame, California; Brian McCarthy, President of the Flying Yankee Restoration, Lincoln, New Hampshire; Karl G. Reed, retired, Aviation Division, E.G. Budd Manufacturing Company, Kennett Square, Pennsylvania; and Richard Blanchard of Kennett Square, Pennsylvania. The author thanks Steve Lampman of the ASM International staff for his guidance and for shepherding the work through to publication. And last but not least, many thanks to my wife, Joan I. Cobb, for proofreading the manuscript and for her many suggestions.

Recognition is given to Outokumpu (the successor company to British Steel Stainless), Sheffield, United Kingdom, for granting permission to reprint portions of *Harry Brearley—Stainless Pioneer*.

Harold M. Cobb
Kennett Square, Pennsylvania
October 2009
Credits

The author gratefully acknowledges the following persons and organizations that have given permission to use illustrations and other materials in The History of Stainless Steel. Acknowledgments and permissions for figures are cited in the captions.

- American Iron and Steel Institute
- American Society for Testing Materials, 1924
- Brian McCarthy, President, Flying Yankee Restoration Group, Inc.
- Catherine M. Houska, TMR Stainless
- Craig Clauser, Craig Clauser Engineering Consulting Incorporated
- D. Gymbruch
- Elwood Haynes Museum, Kokomo, Indiana
- Franklin Institute Museum, Philadelphia, Pennsylvania
- Hagley Museum and Library, Wilmington, Delaware
- J&L Specialty Steel
- Jefferson Expansion Memorial National Park
- Kearns Communications Group
- Louise Fairweather, Outokumpu-Sheffield (successor company to British Steel Stainless), in Chapter 5 for use of excerpts from Harry Brearley—Stainless Pioneer, published by British Steel Stainless, 1988
- Nickel Development Institute
- Pittsburgh Civic Arena
- Princeton Architectural Press
- Sheffield Industrial Museums Trust
- Zapffe family
Harold M. Cobb graduated from Yale University in 1942, receiving a B.E. degree in metallurgical engineering. He has had a broad background in the stainless steel industry, where he was involved in the development of new stainless steel products, including watch screws, hollow stainless steel aircraft propeller blades, roll-formed compressor blades and vanes for jet engines, boron carbide stainless steel for moderating nuclear reactors, and sinter-bonded porous stainless steel fibermetal products.

Cobb's industrial experience included positions at the Edward G. Budd Manufacturing Co., Westinghouse Aviation Gas Turbine Division, United Nuclear Corp., and as chief metallurgist at Clevite Aerospace Products and Pratt & Whitney.

He was chairman of the Philadelphia and Connecticut sections of the American Institute of Mining, Metallurgical and Petroleum Engineers (AIME). He holds a patent on a manufacturing process for nuclear fuel elements.

After 22 years in the metals industry, Cobb became a manager at the American Society for Testing and Materials (ASTM) in Philadelphia, working with many of the metals technical committees, including Committee A-10 on Stainless Steel. He was one of the principal promoters and developers of the Unified Numbering System (UNS) for metals, which was organized jointly by the Society of Automotive Engineers (SAE) and ASTM in 1970. For many years, Cobb developed and served as the number assigner for the miscellaneous steels series of UNS numbers, the K series. He has been the principal editorial consultant for the last four editions of *Metals and Alloys in the Unified Numbering System (UNS)*.
Cobb served as Secretary of the U.S. Secretariat for the International Standards Committee ISO/TC17/SC12 on Carbon Steel Sheet and Strip for 15 years. He has edited 22 books on steel, including works on carbon, alloy and coated steel sheet and strip, tool steels, stainless steel specifications, and a *Pocketbook of Standard Wrought Steels*. In 1999, he became editor of the *Stainless Steels Products Manual*, one of the 16 steel products manuals that the American Iron and Steel Institute (AISI) initiated in the 1950s. In 2008, Cobb edited and substantially revised his second edition of *Stainless Steels*, now published by the Association for Iron and Steel Technology.

He has written the articles “Development of the Unified Numbering System for Metals,” “The Naming and Numbering of Stainless Steels,” and “The 75th Anniversary of the Burlington Zephyr Stainless Steel Train.” Cobb is a member of ASTM Committee A-1 on Steel, Stainless Steel, and Related Alloys and is a Life Member of ASM International.