ASM Handbook®

Volume 14A
Metalworking: Bulk Forming

Prepared under the direction of the
ASM International Handbook Committee

S.L. Semiatin, Volume Editor

Steven R. Lampman, Project Editor
Bonnie R. Sanders, Manager of Production
Gayle J. Anton, Editorial Assistant
Madrid Tramble, Senior Production Coordinator
Jill Kinson, Production Editor
Kathryn Muldoon, Production Assistant
Scott D. Henry, Senior Manager, Product and Service Development

Editorial Assistance
Elizabeth Marquard
Heather Lampman
Cindy Karcher
Beverly Musgrove
Kathleen Dragolich
Marc Schaefer

Materials Park, Ohio 44073-0002
www.asminternational.org
This book is a collective effort involving hundreds of technical specialists. It brings together a wealth of information from worldwide sources to help scientists, engineers, and technicians solve current and long-range problems.

Great care is taken in the compilation and production of this Volume, but it should be made clear that NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE GIVEN IN CONNECTION WITH THIS PUBLICATION. Although this information is believed to be accurate by ASM, ASM cannot guarantee that favorable results will be obtained from the use of this publication alone. This publication is intended for use by persons having technical skill, at their sole discretion and risk. Since the conditions of product or material use are outside of ASM’s control, ASM assumes no liability or obligation in connection with any use of this information. No claim of any kind, whether as to products or information in this publication, and whether or not based on negligence, shall be greater in amount than the purchase price of this product or publication in respect of which damages are claimed. THE REMEDY HEREBY PROVIDED SHALL BE THE EXCLUSIVE AND SOLE REMEDY OF BUYER, AND IN NO EVENT SHALL EITHER PARTY BE LIABLE FOR SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES WHETHER OR NOT CAUSED BY OR RESULTING FROM THE NEGLIGENCE OF SUCH PARTY. As with any material, evaluation of the material under end-use conditions prior to specification is essential. Therefore, specific testing under actual conditions is recommended.

Nothing contained in this book shall be construed as a grant of any right of manufacture, sale, use, or reproduction, in connection with any method, process, apparatus, product, composition, or system, whether or not covered by letters patent, copyright, or trademark, and nothing contained in this book shall be construed as a defense against any alleged infringement of letters patent, copyright, or trademark, or as a defense against liability for such infringement.

Comments, criticisms, and suggestions are invited, and should be forwarded to ASM International.

Library of Congress Cataloging-in-Publication Data
ASM International
ASM Handbook
Includes bibliographical references and indexes

TA459.M43 1990 620.1'6 90-115
SAN: 204-7586

ASM International®
Materials Park, OH 44073-0002
www.asminternational.org

Printed in the United States of America

Multiple copy reprints of individual articles are available from Technical Department, ASM International.
Metalworking is one of the oldest and the most important of manufacturing technologies. Emerging from prehistoric times and progressing thru rapid advances during the Industrial Revolution, when large-scale steelmaking and metalworking operations became widespread. The scientific understanding of metallurgy and metalworking continued well into the 20th century, although in many instances the cost-effective manufacturing of parts still required the process of trial-and-error experimentation due to the complex material, mechanical, and thermal conditions of metalworking operations such as forging, rolling, and other thermomechanical processes.

Today, with the competitive demands of a global economy, the technologies of metalworking operations are being transformed in several ways. First and foremost, computer-aided design and manufacturing systems are becoming indispensable tools in all facets of metalworking. Computer simulations not only reduce or preclude the need for trial-and-error engineering of tooling and process conditions, but computer-based modeling also provides a tool for process optimization. Any industry must continuously evaluate the costs of competitive materials and the operations necessary for converting each material into cost-effective finished products. Manufacturing economy with no sacrifice in quality is paramount, and modern statistical and computer-based process design and control techniques are more important than ever. This book serves as an invaluable introduction to this rapidly evolved technology, and also provides a strong foundation with regard to more standard, well-established metalworking operations, as covered in this volume and Volume 14 of the 9th Edition Metals Handbook series.

Volume 14A of the ASM Handbook series is the first of two volumes covering the distinct processes and industries of bulk working and sheet forming. It covers bulk forming methods (such as forging, extrusion, drawing, and rolling), where three-dimensional deformation produces a new shape with significant change in the cross-section or thickness of a material. In contrast, Volume 14B covers the technology of the stamping and sheet-forming industry, where flat product is shaped into a new form without a significant change in the cross-sectional thickness. These two general categories of metalworking methods are distinct, and a two-volume set also allows for more content in comparison to the Volume 14 of the 9th Edition Metals Handbook, which covered both bulk forming and sheet forming technologies in one volume.

A successful Handbook is the culmination of the time and efforts of many world renowned contributors. To those individuals listed in the next several pages, we extend our sincere thanks. The Society is especially indebted to Dr. S.L. Semiatin for his tireless efforts in organizing and editing this volume. Finally, we are grateful for the support and guidance provided by the ASM Handbook Committee and the skill of an experienced editorial staff. As a result of these combined efforts, the tradition of excellence associated with the ASM Handbook continues.

Bhakta B. Rath
President
ASM International

Stanley C. Theobald
Managing Director
ASM International
Policy on Units of Measure

By a resolution of its Board of Trustees, ASM International has adopted the practice of publishing data in both metric and customary U.S. units of measure. In preparing this Handbook, the editors have attempted to present data in metric units based primarily on Système International d’Unités (SI), with secondary mention of the corresponding values in customary U.S. units. The decision to use SI as the primary system of units was based on the aforementioned resolution of the Board of Trustees and the widespread use of metric units throughout the world.

For the most part, numerical engineering data in the text and in tables are presented in SI-based units with the customary U.S. equivalents in parentheses (text) or adjoining columns (tables). For example, pressure, stress, and strength are shown both in SI units, which are pascals (Pa) with a suitable prefix, and in customary U.S. units, which are pounds per square inch (psi). To save space, large values of psi have been converted to kips per square inch (ksi), where 1 ksi = 1000 psi. The metric tonne (kg×10³) has sometimes been shown in megagrams (Mg). Some strictly scientific data are presented in SI units only.

To clarify some illustrations, only one set of units is presented on artwork. References in the accompanying text to data in the illustrations are presented in both SI-based and customary U.S. units. On graphs and charts, grids corresponding to SI-based units usually appear along the left and bottom edges. Where appropriate, corresponding customary U.S. units appear along the top and right edges.

Data pertaining to a specification published by a specification-writing group may be given in only the units used in that specification or in dual units, depending on the nature of the data. For example, the typical yield strength of steel sheet made to a specification written in customary U.S. units would be presented in dual units, but the sheet thickness specified in that specification might be presented only in inches.

Data obtained according to standardized test methods for which the standard recommends a particular system of units are presented in the units of that system. Wherever feasible, equivalent units are also presented. Some statistical data may also be presented in only the original units used in the analysis.

Conversions and rounding have been done in accordance with IEEE/ASTM SI-10, with attention given to the number of significant digits in the original data. For example, an annealing temperature of 1570 °F contains three significant digits. In this case, the equivalent temperature would be given as 855 °C; the exact conversion to 854.44 °C would not be appropriate. For an invariant physical phenomenon that occurs at a precise temperature (such as the melting of pure silver), it would be appropriate to report the temperature as 961.93 °C or 1763.5 °F. In some instances (especially in tables and data compilations), temperature values in °C and °F are alternatives rather than conversions.

The policy of units of measure in this Handbook contains several exceptions to strict conformance to IEEE/ASTM SI-10; in each instance, the exception has been made in an effort to improve the clarity of the Handbook. The most notable exception is the use of g/cm³ rather than kg/m³ as the unit of measure for density (mass per unit volume).

SI practice requires that only one virgule (diagonal) appear in units formed by combination of several basic units. Therefore, all of the units preceding the virgule are in the numerator and all units following the virgule are in the denominator of the expression; no parentheses are required to prevent ambiguity.
Preface

In the approximately 20 years since the 1988 publication of Volume 14, *Forming and Forging*, of the 9th Edition *Metals Handbook* series (renamed the *ASM Handbook* series in 1991), metalworking practice has seen a number of notable advances with regard to development of:

- New processes that include a number of novel techniques such as advanced roll forming methods, equal-channel angular extrusion, and incremental forging.
- Processes for new materials such as structural-intermetallic alloys and discontinuously-reinforced metal-matrix composites (MMCs) including dramatic approaches for the bulk forming of aluminate-based intermetallic materials and the utilization of commercial scale bulk forming for aluminum-alloy MMCs and, to a lesser extent, titanium-alloy MMCs.
- Improved microstructural control via specialized thermomechanical processing (TMP) of ferrous and nonferrous alloys with recent advances that include: TMP of ferrous alloys to produce carbide-free steels with bainitic microstructures and TMP of nickel-base superalloys to improve damage tolerance or creep resistance in service by techniques that produce a uniform intermediate grain size (ASTM ~6) or a graded microstructure.
- Advanced tools for predicting microstructure evolution based on phenomenological models (predicting, for example, the evolution of recrystallized volume fraction and recrystallized grain size that evolve during hot deformation) and mechanistic models that incorporate deterministic and statistical aspects to varying degrees and seek to quantify the specific mechanism underlying microstructure changes.
- Advanced tools for predicting texture evolution based on models for the prediction of either deformation textures or recrystallization/transformation textures.
- Advanced modeling and optimization techniques using powerful and inexpensive computer hardware and software that have resulted in a revolution in the design of bulk-forming processes.

These developments are briefly described in the article *Introduction to Bulk-Forming Processes* with more detailed articles covering each of these new developments. This edition also includes a new section *Forging Design* with detailed forging examples from past work published in an *ASM Forging Design* Handbook.

In addition, content from the 1988 edition has been split into a two-volume set. This volume focuses on bulk-working operations that include primary operations, in which cast products or consolidated powder billets are worked into mill shapes (such as bar, plate, tube, sheet, wire), and secondary operations in which mill products are further formed into finished products by hot forging, cold forging, drawing, extrusion, etc. The companion Volume 14B focuses on sheet forming, which has several characteristics that distinguish it from bulk working; for example, sheet formability includes different criteria such as springback and the resistance of a sheet material to thinning. In addition, sheet-forming operations typically involve large changes in shape (e.g., cup forming from a flat blank) without a significant change in the sheet thickness, whereas bulk-forming operations typically involve large changes in cross-sectional area (e.g., round bar extrusion or flat rolling) and may be accompanied by large changes in shape (e.g., impression die forging or shape rolling).

S.L. Semiatin
Volume Editor

Bhakta B. Rath
President and Trustee
U.S. Naval Research Laboratory

Reza Abbashian
Vice President and Trustee
University of Florida

Robert C. Tucker, Jr.
Immediate Past President and Trustee
The Tucker Group LLC

Paul L. Huber
Treasurer
Seco/Warwick Corporation

Stanley C. Theobald
Secretary and Managing Director
ASM International

Trustees

Rodney R. Boyer
Boeing Commercial Airplane Group

Dianne Chong
The Boeing Company

Roger J. Fabian
Bodycote Thermal Processing

William E. Frazier
Naval Air Systems Command

Richard L. Kennedy
Allvac

Frederick J. Lisy
Orbital Research Incorporated

Frederick Edward Schmidt
Engineering Systems Incorporated

Richard D. Sisson, Jr.
Worcester Polytechnic Institute

Lawrence C. Wagner
Texas Instruments

Jeffrey A. Hawk
(Chair 2005–; Member 1997–)
U.S. Department of Energy

Larry D. Hanke (1994–)
(Vice Chair 2005–; Member 1994–)
Materials Evaluation and Engineering Inc.

David E. Alman (2002–)
U.S. Department of Energy

Tim Cheek (2004–)
International Truck & Engine Corporation

Lichun Leigh Chen (2002–)
Engineered Materials Solutions

Craig V. Darragh (1989–)
The Timken Company

Michael A. Hollis (2003–)
Delphi Corporation

Dennis D. Huffman (1982–)
The Timken Company (retired)

Kent L. Johnson (1999–)
Engineering Systems Inc.

Ann Kelly (2004–)
Los Alamos National Laboratory

Donald R. Lesner (1999–)
Lawrence Livermore National Laboratory

Huimin Liu (1999–)
Ford Motor Company

Alan T. Male (2003–)
University of Kentucky

William L. Mankins (1989–)
Metallurgical Services Inc.

Toby Padfield (2004–)
ZF Sachs Automotive of America

Srikanth Raghunathan (1999–)
Nanomat Inc.

Karl P. Staudhammer (1997–)
Los Alamos National Laboratory

Kenneth B. Tator (1991–)
KTA-Tator Inc.

George F. Vamder Voort (1997–)
Buehler Ltd.

Previous Chairs of the ASM Handbook Committee

R.J. Austin

L.B. Case
(1931–1933) (Member 1927–1933)

T.D. Cooper

C.V. Darragh
(1999–2002) (Member 1989–

E.O. Dixon

R.L. Dowdell
(1938–1939) (Member 1935–1939)

Henry E. Fairman

M.M. Gauthier

J.F. Harper
(1923–1926) (Member 1923–1926)

C.H. Herty, Jr.
(1934–1936) (Member 1930–1936)

D.D. Huffman
(1986–1990) (Member 1982–

J.B. Johnson
(1948–1951) (Member 1944–1951)

L.J. Korb

R.W.E. Leifer

G.V. Luerssen
(1943–1947) (Member 1942–1947)

G.N. Maniar

W.L. Mankins
(1994–1997) (Member 1989–

J.L. McCall

W.J. Merten
(1927–1930) (Member 1923–1933)

D.L. Olson

N.E. Promisel

G.J. Shubat

W.A. Stadler

R. Ward

M.G.H. Wells

D.J. Wright
(1964–1965) (Member 1959–1967)
Authors and Contributors

Kuldeep Agarwal
The Ohio State University

Sean R. Agnew
University of Virginia

Taylan Altan
The Ohio State University

Bruce Antolovich
Erasteel

Daniel J. Antos
ORX

A. Awadallah
Case Western Reserve University

Sailesh Babu
The Ohio State University

Tony Banik
Special Metals Corporation

Armand J. Beaudoin
University of Illinois Urbana-Champaign

Bernard Bewlay
General Electric Company

J.H. Beynon
University of Sheffield

Yogesh Bhambri
Oak Ridge National Laboratory

Murali Bhupatiraju
Metalynx Corporation

Robert Bolin
Girard Associates Inc.

J.D. Boyd
Queen’s University (Canada)

R. William Buckman, Jr.
Refractory Metals Technology

Anil Chaudhary
Applied Optimization, Inc.

Prabir K. Chaudhury
Orbital Sciences Corporation

George E. Dieter
University of Maryland

Joseph Dombley
Marquette University

Matthew Donachie
Metallurgical Services Incorporated

B. Lynn Ferguson
Deformation Control Technology

Brian Fluth
Diversico Industries

Matthew Fonte
Dynamic Flowform Inc.

D.U. Furrer
Ladish Company, Inc.

Timothy P. Gabb
NASA Glenn Research Center

Angelo Germidis
Centre de Recherche de Trappes

Amit K. Ghosh
University of Michigan

Robert Greczanik
Metalynx

Kenneth A. Green
Rolls-Royce Corporation

Stéphane Guillard
Concurrent Technologies Corporation

Jay Gunasekera
Ohio University

Donald Hack
Jeri Machine, Inc.

Ron Harrigal
United States Mint

Craig S. Hartley
U.S. Air Force Office of Scientific Research

Jeffrey A. Hawk
U.S. Dept. of Energy

Michael Hill
Carpenter Technology Corporation

Albert L. Hoffmanner
Manufacturing Technologies

William F. Hosford
University of Michigan

L.G. Housefield
Pratt & Whitney

Dennis Huffman
The Timken Company (Retired)

Warren H. Hunt, Jr.
Aluminum Consultants Group, Inc.

Bevis Hutchinson
Swedish Institute for Metals Research

W. Brian James
Hoeganaes Corporation

John J. Jonas
McGill University

Kent L. Johnson
Engineering Systems Incorporated

Paul Keeffe
Carpenter Technology Corporation

Richard P. Keele
Freelance Engineer

Ray Keeton
Torrington Swager and Vaill End Forming Machinery Inc.

Leo Kestens
Delft University of Technology

Ash Khare
The Ohio State University

Satish Kini
General Motors Inc.

G.W. Kuhlman
Metalworking Consultant Group LLC

Howard A. Kuhn
Extrudehne

G.D. Lahoti
The Timken Company

J.J. Lewandowski
Case Western Reserve University

Bruce Lindsley
Hoeganaes Corporation

R.S. Mace
Pratt & Whitney

William Mankins
Metallurgical Services Incorporated

Sharon McPike
United States Mint

Hugh McQueen
Concordia University

Wojciech Z. Misiolek
Lehigh University

George Mochnal
Forging Industry Association

R.E. Montero
Pratt & Whitney

Kurt D. Moser
H.C. Starck, Inc.
Contents

Introduction ... 1

Introduction to Bulk-Forming Processes
S.L. Semiatin .. 3
- Historical Perspective .. 3
- Classification of Metalworking Processes .. 3
- Types of Metalworking Equipment .. 4
- Recent Developments in Bulk Forming .. 4
- Conclusions and Future Outlook .. 7

Design for Deformation Processing
Howard Kuhn ... 11
- Product Design ... 11
- Processing to Meet Product Design Requirements .. 11
- Deformation Processing to Meet Product Design Specifications .. 12
- Benefits and Disadvantages of Deformation Processes .. 13
- Summary .. 19

Forging Equipment and Dies ... 21

Hammers and Presses for Forging
Taylan Altan, Manas Shirgaokar ... 23
- Hammers ... 23
- High-Energy-Rate Forging (HERF) Machines .. 26
- Mechanical Presses .. 27
- Hydraulic Presses ... 30
- Screw Presses .. 33
- Multiple-Ram Presses .. 34
- Safety ... 35

Selection of Forging Equipment
Taylan Altan, Manas Shirgaokar ... 36
- Process Requirements and Forging Machines .. 36
- Classification and Characterization of Forging Machines .. 37
- Hydraulic Presses ... 39
- Mechanical Presses .. 40
- Screw Presses .. 43
- Hammers ... 45

Dies and Die Materials for Hot Forging
Rajiv Sivpuri .. 47
- Open Dies ... 47
- Impression Dies .. 47
- Forging Machine Dies ... 49
- Die Materials (Ref 1) .. 49
- Factors in the Selection of Die Materials .. 50
- Die Inserts .. 52
- Parting Line .. 52
- Locks and Counterlocks .. 53
- Mismatch .. 54

Draft .. 54
Flash .. 54
Preform Design .. 55
Location of Impressions ... 55
Multiple-Part Dies ... 55
Dies for Precision Forging .. 56
Fabrication of Impression Dies ... 56
Resinking .. 57
Cast Dies .. 57
Heat Treating .. 58
Trimming and Punching Dies .. 60
Die Life .. 60
Safety .. 61

Die Wear
Rajiv Sivpuri, Sailesh Babu, S.L. Semiatin .. 62
- Die Wear and Failure Mechanisms ... 62
- Materials for Dies ... 64
- Die Wear in Hot Forging Dies .. 70
- Surface Treatments and Coatings ... 76

Lubricants and their Applications in Forging
Rajiv Sivpuri, Satish Kini ... 84
- Candidate Lubricants .. 84
- Applications .. 88
- Die Manufacturing and Finishing ... 93
- High-Speed and Hard Machining ... 93
- Nontraditional Machining of Dies and Molds .. 95
- Other Methods .. 96

Forging Processes .. 97

Open-Die Forging ... 99
- Size and Weight .. 99
- Shapes .. 99
- Hammers and Presses .. 99
- Dies ... 99
- Auxiliary Tools ... 99
- Handling Equipment .. 101
- Production and Practice ... 101
- Ingot Structure and Its Elimination ... 102
- Forgeability ... 102
- Deformation Modeling ... 102
- Examples of Production Practice ... 104
- Contour Forging .. 107
- Roll Planishing ... 108
- Allowances and Tolerances ... 108
- Safety .. 110

Closed-Die Forging in Hammers and Presses .. 111
- Capabilities of the Process ... 111
- Forging Materials ... 111
Forging of Carbon and Alloy Steels 239

Practical Aspects of Converting Ingot to Billet

George Mochnal
B. Lynn Ferguson
Bruce Lindsley, Vasisht Venkatesh

Cleaning ... 203

Die Lubrication .. 203

Heating of Dies ... 203

Heating for Forging .. 203

Thin-Walled Forgings ... 203

Processing Problems and Solutions 203

Control of Dimensions, Finish, and Weight 204

Powder Forging

B. Lynn Ferguson ... 205

Material Considerations .. 206

Process Considerations .. 208

Mechanical Properties .. 213

Quality Assurance for P/F Parts 219

Applications of Powder Forged Parts 220

Thermal Control .. 230

Dies .. 229

Presses .. 227

Cogging ... 227

Presses .. 227

Dies .. 229

Transportation Equipment ... 229

Thermal Control .. 230

Conversion Processes .. 230

Modeling of the Cogging Process 232

Conclusions ... 236

Forging of Steels and Heat-Resistant Alloys 239

Forging of Carbon and Alloy Steels

C.J. Van Tyne .. 241

Types of Forgings .. 241

Forging Practices .. 241

Selection of Steel .. 243

Controlled Forging of Steel .. 245

Forging Practices .. 241

Effects of Forging on Component Properties 248

Heat Treatment of Carbon and Alloy Steel

Forgings ... 250

Design Features ... 251

Machining of Forgings .. 254

Design of Hot Upset Forgings 258

Forging of Stainless Steels

George Mochnal ... 261

Forging Methods .. 261

Ingot Breakdown .. 261

Forgeability .. 262

Austenitic Stainless Steels ... 262

Martensitic Stainless Steels .. 264

Ferritic Stainless Steels ... 265

Precipitation-Hardening Stainless Steels 265

Forging Equipment ... 265

Dies ... 266

Heating for Forging .. 267

Heating of Dies ... 268

Die Lubrication ... 268

Trimming ... 268

Cleaning ... 268

Forging of Heat-Resistant Alloys

Y. Bhambri, V.K. Sikka .. 269

Forging Process .. 269

Grain Refinement with IN-718 Forging—Controlling Structure with Precipitated Phases (Ref 3) 273

Forging Methods .. 273

Forging Alloys .. 274

Deformation Mechanisms and Processing Maps 278

Equipment ... 279

Forging Practices .. 281

Heat Treatment ... 282

Forging of Refractory Metals

John A. Shields, Jr., Kurt D. Moser, R. William Buckman, Jr., Todd Leonhardt, C. Craig Wojcik ... 284

Niobium and Niobium Alloys 284

Molybdenum and Molybdenum Alloys 284

Tantalum and Tantalum Alloys 285

Tungsten and Tungsten Alloys 285

Thermomechanical Processing of Ferrous Alloys

Stephen Yue .. 286

Rolling Practices and TMP Factors 287

Grain Refinement of Steel by Hot Working 288

Restoration Processes ... 288

Strain-Induced Transformation (Austenite Pancaking) 290

Alloying in HSLA Steels .. 290

Evolution of Microstructure During Hot Rolling 291

General Guidelines for Schedule Design 293

Basic Rolling Strategies ... 293

Other Schedules and TMP Strategies 295

The Future of TMP ... 296

Forging of Nonferrous Metals 297

Forging of Aluminum Alloys

G.W. Kuhlman .. 299

Forgeability .. 299

Forging Methods .. 301

Forging Equipment ... 303

Die Materials, Design, and Manufacture 304

Processing of Aluminum Alloy Forgings 305

Forging of Advanced Aluminum Materials 308

Aluminum Alloy Precision Forgings 309

Forging of Copper and Copper Alloys 313

Forging Products .. 313

Forging Processes ... 313

Forging Alloys .. 314

Forging Design .. 315

Forging Equipment ... 315

Forging Practices .. 316

Forging of Magnesium Alloys

Prabir K. Chaudhury, Sean R. Agnew 318

Workability ... 319

Forging Equipment ... 321

Forging Processes ... 321

Forging Practice ... 322

Forging of Nickel-Base Alloys

D.U. Furrer, S.L. Semiatin .. 324

Heating for Forging .. 324

Die Materials and Lubricants .. 326

Primary Working ... 326
Secondary Working .. 327
Conclusions .. 329
Forging of Titanium Alloys
G.W. Kuhlman ... 331
Titanium Alloys Classes .. 331
Forgeability .. 332
Forging Methods .. 335
Forging Equipment .. 339
Die Specifications .. 340
Titanium Alloy Forging Processing 342
Selection of Forging Method .. 347
Titanium Alloy Precision Forgings 347
Forging Advanced Titanium Materials 351
Titanium Aluminides ... 351
Cavitation and Failure During Hot Forging 353
Bulk Forming of Intermetallic Alloys
S.L. Semiatin .. 354
Iron-, Nickel-, Niobium-, and Molybdenum-Base
Intermetallic Alloys .. 354
Processing of Gamma Titanium-Aluminide Alloys 356
Processing-Cost Trade-offs for Gamma Titanium-Aluminide
Alloys .. 362
Summary and Future Outlook .. 364
Forging of Discontinuously Reinforced Aluminum Composites
A. Awadallah, J.J. Lewandowski 366
General Information ... 367
Specific Results on Various DRA Systems 367
Modeling of Forging Behavior .. 371
Properties of Deformation-Processed DRA Alloys 371
Thermomechanical Processes for Nonferrous Alloys
D.U. Furrer, S.L. Semiatin ... 374
Goals of Advanced Thermomechanical Processing 374
Nickel-Base Superalloys .. 374
Thermomechanical Processing of Nickel-Base
Superalloys .. 375
Alpha-Beta Titanium Alloys ... 376
Beta Titanium Alloys ... 378
Computer Simulation of Advanced TMP Processes 378
Cold Heading and Cold Extrusion 381
Cold Heading
Toby Padfield, Murali Bhupatiraju 383
Process Parameters in Cold Heading 383
Materials for Cold Heading ... 384
Workability and Defects .. 386
Cold-Heading Machines .. 387
Tools .. 389
Tool Materials ... 389
Preparation of Work Metal .. 391
Complex Workpieces ... 393
Economy in Cold Heading ... 394
Reverse Forming ... 395
Dimensional Accuracy ... 396
Surface Finish ... 396
Combined Heading and Extrusion 397
Warm Heading ... 399
Cold Extrusion
Murali Bhupatiraju, Robert Grenczanik 405
Extrusion Pressure .. 405
Steel for Cold Extrusion .. 405
Equipment .. 407
Tooling .. 407
Preparation of Slugs ... 409
Lubricants for Steel ... 410
Selection of Procedure .. 410
Dimensional Accuracy ... 413
Causes of Problems ... 413
Cold Extrusion of Aluminum Alloy Parts 413
Cold Extrusion of Copper and Copper Alloy Parts 417
Impact Extrusion of Magnesium Alloys 417
Cold Extrusion of Nickel Alloys 418
Other Bulk Forming Processes ... 419
Conventional Hot Extrusion
Frank F. Kraft, Jay S. Gunasekera 421
Nonlubricated Hot Extrusion .. 421
Lubricated Hot Extrusion .. 422
Metal Flow in Hot Extrusion .. 423
Extrusion Speeds and Temperatures 423
Presses for Extrusion .. 425
Tooling .. 427
Materials for Extrusion ... 430
Characterization of Extruded Shapes 431
Operating Parameters .. 431
Applications of Computer-Aided Design and Manufacture
(CAD/CAM) ... 434
Hydrostatic Extrusion of Metals and Alloys
J.J. Lewandowski, A. Awadallah 440
General Aspects of Stress-State Effects on
Processing .. 440
Hydrostatic Extrusion Fundamentals 441
Hydrostatic Extrusion of Structural Alloys 443
Hydrostatic Extrusion of Composite Systems 444
Hydrostatic Extrusion of Brittle Materials 445
Hydrostatic Extrusion of Intermetallics or Intermetallic
Compounds ... 445
Hot Hydrostatic Extrusion .. 446
Wire, Rod, and Tube Drawing ... 448
Basic Mechanics of Drawing (Ref 4) 448
Preparation for Drawing (Ref 5) 449
Drawing of Rod and Wire (Ref 5) 450
Drawing of Bar (Ref 5) ... 451
Drawing of Tube (Ref 5) ... 452
Dies and Die Materials .. 453
Lubrication (Ref 7) .. 454
The Manufacture of Commercial Superconductors 455
Flat, Bar, and Shape Rolling
G.D. Lahoti, M.P. Pauskar ... 459
Basic Rolling Processes .. 459
Strip Rolling Theory ... 460
Mechanics of Plate Rolling .. 462
Shape Rolling ... 463
Rolling Mills (Ref 69) .. 469
Rolls and Roll Materials .. 470
Roll Manufacturing Methods ... 472
Instruments and Controls ... 472
Automatic Gage Control (AGC) 473
Materials for Rolling ... 473
Heated-Roll Rolling ... 474
Defects in Rolling .. 476
Roll Forming of Axially Symmetric Components

<table>
<thead>
<tr>
<th>Roll Forming of Axially Symmetric Components</th>
<th>480</th>
</tr>
</thead>
</table>

Roll Forming Process	480
Roll Formed Aluminum Alloy Components	482
Roll Formed Titanium Alloy Components	484
Roll Formed Nickel-Alloy Components	487
Mechanical Property Data for Titanium and Nickel Alloys	487

Thread Rolling	489
Capabilities and Limitations	489
Evaluation of Metals for Thread Rolling	490
Preparation and Feeding of Work Blanks	491
Die Materials	491
Flat-Die Rolling	492
Radial-Infeed Rolling	493
Tangential Rolling	494
Through-Feed Rolling	495
Planetary Thread Rolling	496
Continuous Rolling	497
Internal Thread Rolling	497
Selection of Rolling Method	498
Factors Affecting Die Life	499
Effect of Thread Form on Processing	500
Surface Speed	500
Penetration Rate and Load Requirements	500
Warm Rolling	501
Threading of Thin-Wall Parts	502
Threading Work-Hardenining Materials	502
Rolling Threads Close to Shoulders	503
Fluids for Thread Rolling	503
Thread Rolling versus Alternative Processes	504

Coextrusion	505
Raghavan Srinivasan, Craig S. Hartley	505
Applications of Coextrusion	505
Billet Configurations for Coextrusion	506
Material Flow Modes During Coextrusion	506
Analytical Studies of Coextrusion	507
Deformation Energy Method	507
Experimental Studies	512
State-of-the-Art of Coextrusion	513

Coextrusion	505
Flow Forming	516
George Ray, Deniz Yilmaz, Matthew Fonte, Richard P. Keele	516
Process Description	516
Tooling	518
Forming Direction	519
Process Control	520

Extrusion of Aluminum Alloys	522
Wojciech Z. Mistołek, Richard M. Kelly	522
Aluminum Extrusion alloys	522
Profile Types	523
Classes of Profiles	523
Process of Aluminum Extrusion	524

Equal Channel Angular Extrusion	528
Vladimir Segal	528
Phenomenology of Severe Plastic Deformation	528
Mechanics of Equal-Channel Angular Extrusion	529
Multipass Equal-Channel Angular Extrusion	530
Characteristics of Processing	531
Tool Design	532

Structural Effects	533
Effect on Properties	534
Applications	535

Microstructure Evolution, Constitutive Behavior, and Workability	537
Plastic Deformation Structures	539
Plastic Deformation in Crystals	539
Amount of Deformation	542
Composition	544
Deformation Modes	545
Low Temperature and High Strain Rate	548
Elevated Temperatures	549

Recovery, Recrystallization, and Grain-Growth Structures	552
The Deformed State	552
Recovery	553
Recrystallization	554
Grain Growth	557
Microstructure Evolution during Hot Working	559

Constitutive Equations	563
Amit Ghosh	563
Strain Hardening	563
Strain Rate Effects	563
Isothermal Constitutive Model	565
Dynamic Recovery	570
Diffusional Flow Mechanisms	574
Physical Model for Superplastic Flow	579

Evaluation of Workability for Bulk Forming Processes	587
George E. Dieter	587
Flow Curves	587
Material Factors Affecting Workability	591
Process Variables Determining Workability	594
Workability Fracture Criteria	596
Workability Tests	602
Finite-Element Modeling in Workability Analysis	610
Conclusions	612

Modeling and Computer Aided Process Design for Bulk Forming	615
Finite Element Method Applications in Bulk Forming	617
Soo-Ik Oh, John Walters, Wei-Tsu Wu	617
Historical Overview	617
Methodologies	618
Primary Materials Processing Applications	619
Hot Forging Applications	621
Cold Forming Applications	624
Fracture Prediction	627
Die Stress Analysis	630
Product Assembly	632
Optimization of Forging Simulations	634
Conclusion	637

Design Optimization for Dies and Preforms	640
Anil Chaudhary, Suhas Vaze	640
Composing the Objective Function	640
Calculation of the Objective Function	641
Search for Optimum	642
Conclusions	644
Introduction

Introduction to Bulk-Forming Processes

- Historical Perspective ... 3
- Classification of Metalworking Processes 3
- Types of Metalworking Equipment 4
- Recent Developments in Bulk Forming 4
- Conclusions and Future Outlook 7

Design for Deformation Processing

- Product Design .. 11
- Processing to Meet Product Design Requirements 11
- Deformation Processing to Meet Product Design
 - Specifications .. 12
- Benefits and Disadvantages of Deformation Processes ... 13
- Summary .. 19
Forging Processes

Open-Die Forging ... 99
 Size and Weight ... 99
 Shapes .. 99
 Hammers and Presses .. 99
 Dies .. 99
 Auxiliary Tools ... 99
 Handling Equipment ... 101
 Production and Practice .. 101
 Ingot Structure and Its Elimination 102
 Forgeability ... 102
 Deformation Modeling ... 102
 Examples of Production Practice 104
 Contour Forging ... 107
 Roll Planishing ... 108
 Allowances and Tolerances .. 108
 Safety ... 110

Closed-Die Forging in Hammers and Presses 111
 Capabilities of the Process .. 111
 Forging Materials .. 111
 Friction and Lubrication in Forging 112
 Classification of Closed-Die Forgings 112
 Shape Complexity in Forging ... 112
 Design of Blocker (Preform) Dies 113
 Flash Design .. 114
 Prediction of Forging Pressure .. 115
 Equipment for Closed-Die Forging 116
 Forging Temperatures for Steels 116
 Control of Die Temperature .. 117
 Trimming ... 118
 Cooling Practice .. 118
 Typical Forging Sequence .. 118

Hot Upset Forging ... 119
 Applicability ... 119
 Upset Forging Machines .. 119
 Selection of Machine Size ... 120
 Tools ... 121
 Preparation of Forging Stock .. 122
 Metal-Saving Techniques ... 123
 Heating .. 123
 Die Cooling and Lubrication .. 123
 Simple Upsetting .. 123
 Upsetting and Piercing .. 124
 Offset Upsetting ... 126
 Double-End Upsetting .. 126
 Upsetting with Sliding Dies ... 126
 Upsetting Pipe and Tubing .. 126
 Electric Upsetting .. 129
 Other Upsetting Processes ... 130

Roll Forging ... 131
 Capabilities ... 131
 Machines .. 131
 Roll Dies ... 132
 Auxiliary Tools ... 133
 Production and Practice .. 133
 Modeling and Simulation ... 134
 Production Examples ... 134

Ring Rolling ... 136
 Process Overview .. 136
 Applications ... 136
 Ring Sizes and Production Ranges 137
 Machines .. 137
 Product and Process Technology 143
 Blank Preparation .. 148
 Ancillary Operations .. 151
 Blanking Tools and Work Rolls 152
 Combined Forging and Rolling 153
 Rolled Ring Tolerances and Machining......................... 155
 Allowances .. 155
 Alternative Processes .. 155

Rotary Swaging of Bars and Tubes 156
 Applicability ... 156
 Metal Flow During Swaging ... 157
 Machines .. 158
 Swaging Dies ... 160
 Auxiliary Tools ... 162
 Automated Swaging Machines 162
 Tube Swaging without a Mandrel 163
 Tube Swaging with a Mandrel 165
 Effect of Reduction ... 166
 Effect of Feed Rate ... 166
 Effect of Die Taper Angle .. 166
 Effect of Surface Contaminants 167
 Lubrication ... 167
 Dimensional Accuracy ... 167
 Surface Finish ... 167
 Swaging versus Alternative Processes 167
 Swaging Combined with Other Processes 168
 Special Applications ... 169
 Hot Swaging ... 169
 Material Response ... 169
 Noise Suppression .. 170
 Swaging Problems and Solutions 170

Radial Forging ... 172
 Types of Radial Forging ... 172
 Advantages of Radial Forging Versus Open-Die Cogging/... 172
 Forging ... 172

Rotation: 0
Disadvantages of Radial Forging versus Open-Die Cogging

Forging	173
Types of Radial Forging Machines	173
Forging Schedule Development	175
Forging Dies	175
Product Shape Control	176
Example Parts and Processes	177

Rotary Forging

Applications	179
Advantages and Limitations	180
Machines	180
Dies	181
Examples	181

Isothermal and Hot-Die Forging

Comparison	183
Process Advantages	183
Process Disadvantages	184
Detailed Process Description	184
Alloy Applications	185
Process Selection	186
Process Design	186
Forging Design Guidelines	188
Application of Finite-Element Analysis Modeling to Design	188
Cost	190
Production Forgings	190
Future Industry Trends	191

Precision Hot Forging

Variables Affecting the Accuracy of Forgings	193
Tolerances for Precision Forging	195
Precision Flashless Forging	196
Flashless Forging of Spur Gears	196
Forging and Welding of Axle Shafts	196
Forging of Bevel Gears/Spiral Bevel Gears	197

Coining

Applicability	198
Hammers and Presses	198
Lubricants	199
Die Materials	199
Special Die Materials	200
Coinability of Metals	201
Production Practice	201
Processing Problems and Solutions	203
Control of Dimensions, Finish, and Weight	204

Powder Forging

Material Considerations	205
Process Considerations	206
Mechanical Properties	208
Quality Assurance for P/F Parts	213
Applications of Powder Forged Parts	219

Practical Aspects of Converting Ingot to Billet

Cogging	227
Presses	227
Dies	229
Transportation Equipment	229
Thermal Control	230
Conversion Processes	230
Modeling of the Cogging Process	232
Conclusions	236
Forging of Steels and Heat-Resistant Alloys

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forging of Carbon and Alloy Steels</td>
<td>241</td>
</tr>
<tr>
<td>Types of Forgings</td>
<td>241</td>
</tr>
<tr>
<td>Forging Practices</td>
<td>241</td>
</tr>
<tr>
<td>Selection of Steel</td>
<td>243</td>
</tr>
<tr>
<td>Controlled Forging of Steel</td>
<td>245</td>
</tr>
<tr>
<td>Forgeability and Mechanical Properties</td>
<td>246</td>
</tr>
<tr>
<td>Effects of Forging on Component Properties</td>
<td>248</td>
</tr>
<tr>
<td>Heat Treatment of Carbon and Alloy Steel Forgings</td>
<td>250</td>
</tr>
<tr>
<td>Design Features</td>
<td>251</td>
</tr>
<tr>
<td>Machining of Forgings</td>
<td>254</td>
</tr>
<tr>
<td>Design of Hot Upset Forgings</td>
<td>258</td>
</tr>
<tr>
<td>Forging of Stainless Steels</td>
<td>261</td>
</tr>
<tr>
<td>Forging Methods</td>
<td>261</td>
</tr>
<tr>
<td>Ingot Breakdown</td>
<td>261</td>
</tr>
<tr>
<td>Forgeability</td>
<td>262</td>
</tr>
<tr>
<td>Austenitic Stainless Steels</td>
<td>262</td>
</tr>
<tr>
<td>Martensitic Stainless Steels</td>
<td>264</td>
</tr>
<tr>
<td>Ferritic Stainless Steels</td>
<td>265</td>
</tr>
<tr>
<td>Precipitation-Hardening Stainless Steels</td>
<td>265</td>
</tr>
<tr>
<td>Forging Equipment</td>
<td>265</td>
</tr>
<tr>
<td>Dies</td>
<td>266</td>
</tr>
<tr>
<td>Heating for Forging</td>
<td>267</td>
</tr>
<tr>
<td>Heating of Dies</td>
<td>268</td>
</tr>
<tr>
<td>Die Lubrication</td>
<td>268</td>
</tr>
<tr>
<td>Trimming</td>
<td>268</td>
</tr>
<tr>
<td>Cleaning</td>
<td>268</td>
</tr>
<tr>
<td>Forging of Heat-Resistant Alloys</td>
<td>269</td>
</tr>
<tr>
<td>Forging Process</td>
<td>269</td>
</tr>
<tr>
<td>Grain Refinement with IN-718 Forging—Controlling Structure</td>
<td>273</td>
</tr>
<tr>
<td>with Precipitated Phases (Ref 3)</td>
<td>273</td>
</tr>
<tr>
<td>Forging Methods</td>
<td>273</td>
</tr>
<tr>
<td>Forging Alloys</td>
<td>274</td>
</tr>
<tr>
<td>Deformation Mechanisms and Processing Maps</td>
<td>278</td>
</tr>
<tr>
<td>Equipment</td>
<td>279</td>
</tr>
<tr>
<td>Forging Practices</td>
<td>281</td>
</tr>
<tr>
<td>Heat Treatment</td>
<td>282</td>
</tr>
<tr>
<td>Forging of Refractory Metals</td>
<td>284</td>
</tr>
<tr>
<td>Niobium and Niobium Alloys</td>
<td>284</td>
</tr>
<tr>
<td>Molybdenum and Molybdenum Alloys</td>
<td>284</td>
</tr>
<tr>
<td>Tantalum and Tantalum Alloys</td>
<td>285</td>
</tr>
<tr>
<td>Tungsten and Tungsten Alloys</td>
<td>285</td>
</tr>
<tr>
<td>Thermomechanical Processing of Ferrous Alloys</td>
<td>286</td>
</tr>
<tr>
<td>Rolling Practices and TMP Factors</td>
<td>287</td>
</tr>
<tr>
<td>Grain Refinement of Steel by Hot Working</td>
<td>288</td>
</tr>
<tr>
<td>Restoration Processes</td>
<td>288</td>
</tr>
<tr>
<td>Strain-Induced Transformation (Austenite Pancaking)</td>
<td>290</td>
</tr>
<tr>
<td>Alloying in HSLA Steels</td>
<td>290</td>
</tr>
<tr>
<td>Evolution of Microstructure During Hot Rolling</td>
<td>291</td>
</tr>
<tr>
<td>General Guidelines for Schedule Design</td>
<td>293</td>
</tr>
<tr>
<td>Basic Rolling Strategies</td>
<td>293</td>
</tr>
<tr>
<td>Other Schedules and TMP Strategies</td>
<td>295</td>
</tr>
<tr>
<td>The Future of TMP</td>
<td>296</td>
</tr>
</tbody>
</table>
Forging of Nonferrous Metals

<table>
<thead>
<tr>
<th>Forging of Aluminum Alloys ... 299</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forgeability ... 299</td>
</tr>
<tr>
<td>Forging Methods ... 301</td>
</tr>
<tr>
<td>Forging Equipment .. 303</td>
</tr>
<tr>
<td>Die Materials, Design, and Manufacture 304</td>
</tr>
<tr>
<td>Processing of Aluminum Alloy Forgings 305</td>
</tr>
<tr>
<td>Forging Advanced Aluminum Materials 308</td>
</tr>
<tr>
<td>Aluminum Alloy Precision Forgings ... 309</td>
</tr>
<tr>
<td>Forging of Copper and Copper Alloys ... 313</td>
</tr>
<tr>
<td>Forging Products ... 313</td>
</tr>
<tr>
<td>Forging Processes ... 313</td>
</tr>
<tr>
<td>Forging Alloys ... 314</td>
</tr>
<tr>
<td>Forging Design ... 315</td>
</tr>
<tr>
<td>Forging Equipment ... 315</td>
</tr>
<tr>
<td>Forging Practices .. 316</td>
</tr>
<tr>
<td>Forging of Magnesium Alloys ... 318</td>
</tr>
<tr>
<td>Workability ... 319</td>
</tr>
<tr>
<td>Forging Equipment ... 321</td>
</tr>
<tr>
<td>Forging Processes ... 321</td>
</tr>
<tr>
<td>Forging Practice ... 322</td>
</tr>
<tr>
<td>Forging of Nickel-Base Alloys .. 324</td>
</tr>
<tr>
<td>Heating for Forging .. 324</td>
</tr>
<tr>
<td>Die Materials and Lubricants ... 326</td>
</tr>
<tr>
<td>Primary Working ... 326</td>
</tr>
<tr>
<td>Secondary Working ... 327</td>
</tr>
<tr>
<td>Conclusions ... 329</td>
</tr>
<tr>
<td>Forging of Titanium Alloys .. 331</td>
</tr>
<tr>
<td>Titanium Alloys Classes ... 331</td>
</tr>
<tr>
<td>Forgeability ... 332</td>
</tr>
<tr>
<td>Forging Methods ... 335</td>
</tr>
<tr>
<td>Forging Equipment ... 339</td>
</tr>
<tr>
<td>Die Specifications ... 340</td>
</tr>
<tr>
<td>Titanium Alloy Forging Processing .. 342</td>
</tr>
<tr>
<td>Selection of Forging Method ... 347</td>
</tr>
<tr>
<td>Titanium Alloy Precision Forgings ... 347</td>
</tr>
<tr>
<td>Forging Advanced Titanium Materials 351</td>
</tr>
<tr>
<td>Titanium Aluminides .. 351</td>
</tr>
<tr>
<td>Cavitation and Failure During Hot Forging 353</td>
</tr>
<tr>
<td>Bulk Forming of Intermetallic Alloys .. 354</td>
</tr>
<tr>
<td>Iron-, Nickel-, Niobium-, and Molybdenum-Based Intermetallic Alloys .. 354</td>
</tr>
<tr>
<td>Processing of Gamma Titanium-Aluminide Alloys 356</td>
</tr>
<tr>
<td>Processing-Cost Trade-offs for Gamma Titanium-Aluminide Alloys .. 362</td>
</tr>
<tr>
<td>Summary and Future Outlook .. 364</td>
</tr>
<tr>
<td>Forging of Discontinuously Reinforced Aluminum Composites .. 366</td>
</tr>
<tr>
<td>General Information ... 367</td>
</tr>
<tr>
<td>Specific Results on Various DRA Systems 367</td>
</tr>
<tr>
<td>Modeling of Forging Behavior ... 371</td>
</tr>
<tr>
<td>Properties of Deformation-Processed DRA Alloys 371</td>
</tr>
<tr>
<td>Thermomechanical Processes for Nonferrous Alloys 374</td>
</tr>
<tr>
<td>Goals of Advanced Thermomechanical Processing 374</td>
</tr>
<tr>
<td>Nickel-Base Superalloys .. 374</td>
</tr>
<tr>
<td>Thermomechanical Processing of Nickel-Base Superalloys 375</td>
</tr>
<tr>
<td>Alpha-Beta Titanium Alloys .. 376</td>
</tr>
<tr>
<td>Beta Titanium Alloys ... 378</td>
</tr>
<tr>
<td>Computer Simulation of Advanced TMP Processes 378</td>
</tr>
</tbody>
</table>
Cold Heading and Cold Extrusion

Cold Heading

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process Parameters in Cold Heading</td>
<td>383</td>
</tr>
<tr>
<td>Materials for Cold Heading</td>
<td>384</td>
</tr>
<tr>
<td>Workability and Defects</td>
<td>386</td>
</tr>
<tr>
<td>Cold-Heading Machines</td>
<td>387</td>
</tr>
<tr>
<td>Tools</td>
<td>389</td>
</tr>
<tr>
<td>Tool Materials</td>
<td>389</td>
</tr>
<tr>
<td>Preparation of Work Metal</td>
<td>391</td>
</tr>
<tr>
<td>Complex Workpieces</td>
<td>393</td>
</tr>
<tr>
<td>Economy in Cold Heading</td>
<td>394</td>
</tr>
<tr>
<td>Reverse Forming</td>
<td>395</td>
</tr>
<tr>
<td>Dimensional Accuracy</td>
<td>396</td>
</tr>
<tr>
<td>Surface Finish</td>
<td>396</td>
</tr>
<tr>
<td>Combined Heading and Extrusion</td>
<td>397</td>
</tr>
<tr>
<td>Warm Heading</td>
<td>399</td>
</tr>
</tbody>
</table>

Cold Extrusion

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extrusion Pressure</td>
<td>405</td>
</tr>
<tr>
<td>Steel for Cold Extrusion</td>
<td>405</td>
</tr>
<tr>
<td>Equipment</td>
<td>407</td>
</tr>
<tr>
<td>Tooling</td>
<td>407</td>
</tr>
<tr>
<td>Preparation of Slugs</td>
<td>409</td>
</tr>
<tr>
<td>Lubricants for Steel</td>
<td>410</td>
</tr>
<tr>
<td>Selection of Procedure</td>
<td>410</td>
</tr>
<tr>
<td>Dimensional Accuracy</td>
<td>413</td>
</tr>
<tr>
<td>Causes of Problems</td>
<td>413</td>
</tr>
<tr>
<td>Cold Extrusion of Aluminum Alloy Parts</td>
<td>413</td>
</tr>
<tr>
<td>Cold Extrusion of Copper and Copper Alloy</td>
<td>413</td>
</tr>
<tr>
<td>Parts</td>
<td>416</td>
</tr>
<tr>
<td>Impact Extrusion of Magnesium Alloys</td>
<td>417</td>
</tr>
<tr>
<td>Cold Extrusion of Nickel Alloys</td>
<td>418</td>
</tr>
</tbody>
</table>
Other Bulk Forming Processes

Conventional Hot Extrusion ... 421
 Nonlubricated Hot Extrusion ... 421
 Lubricated Hot Extrusion .. 422
 Metal Flow in Hot Extrusion .. 423
 Extrusion Speeds and Temperatures ... 423
 Presses for Extrusion ... 425
 Tooling .. 427
 Materials for Extrusion .. 430
 Characterization of Extruded Shapes ... 431
 Operating Parameters ... 431
 Applications of Computer-Aided Design and Manufacture
 (CAD/CAM) ... 434
Hydrostatic Extrusion of Metals and Alloys 440
 General Aspects of Stress-State Effects on Processing 440
 Hydrostatic Extrusion Fundamentals .. 441
 Hydrostatic Extrusion of Structural Alloys 443
 Hydrostatic Extrusion of Composite Systems 444
 Hydrostatic Extrusion of Brittle Materials 445
 Hydrostatic Extrusion of Intermetallics or Intermetallic Compounds ... 445
 Hot Hydrostatic Extrusion .. 446
Wire, Rod, and Tube Drawing .. 448
 Basic Mechanics of Drawing (Ref 4) .. 448
 Preparation for Drawing (Ref 5) ... 449
 Drawing of Rod and Wire (Ref 5) .. 450
 Drawing of Bar (Ref 5) .. 451
 Drawing of Tube (Ref 5) .. 452
 Dies and Die Materials ... 453
 Lubrication (Ref 7) .. 454
 The Manufacture of Commercial Superconductors 455
Flat, Bar, and Shape Rolling .. 459
 Basic Rolling Processes ... 459
 Strip Rolling Theory .. 460
 Mechanics of Plate Rolling .. 462
 Shape Rolling ... 463
 Rolling Mills (Ref 69) .. 469
 Rolls and Roll Materials ... 470
 Roll Manufacturing Methods .. 472
 Instruments and Controls .. 472
 Automatic Gage Control (AGC) ... 473
 Materials for Rolling ... 473
 Heated-Roll Rolling ... 474
 Defects in Rolling .. 476
Roll Forming of Axially Symmetric Components 480
 Roll Forming Process .. 480
 Roll Formed Aluminum Alloy Components 482
 Roll Formed Titanium Alloy Components 484
 Roll Formed Nickel-Alloy Components 487
 Mechanical Property Data for Titanium and Nickel Alloys 487
Thread Rolling ... 489
 Capabilities and Limitations .. 489
 Evaluation of Metals for Thread Rolling 490
 Preparation and Feeding of Work Blanks 491
 Die Materials .. 491
 Flat-Die Rolling ... 492
 Radial-Infeed Rolling .. 493
 Tangential Rolling .. 494
 Through-Feed Rolling .. 495
 Planetary Thread Rolling ... 496
 Continuous Rolling ... 497
 Internal Thread Rolling .. 497
 Selection of Rolling Method .. 498
 Factors Affecting Die Life .. 499
 Effect of Thread Form on Processing ... 500
 Surface Speed ... 500
 Penetration Rate and Load Requirements 500
 Warm Rolling .. 501
 Threading of Thin-Wall Parts .. 502
 Threading Work-Hardening Materials 502
 Rolling Threads Close to Shoulders ... 503
 Fluids for Thread Rolling ... 503
 Thread Rolling versus Alternative Processes 504
Coextrusion .. 505
 Applications of Coextrusion .. 505
 Billet Configurations for Coextrusion ... 506
 Material Flow Modes During Coextrusion 506
 Analytical Studies of Coextrusion .. 507
 Deformation Energy Method .. 507
 Experimental Studies ... 512
 State-of-the-Art of Coextrusion .. 513
Flow Forming ... 516
 Process Description .. 516
 Tooling ... 518
 Forming Direction ... 519
 Process Control ... 520
Extrusion of Aluminum Alloys ... 522
 Aluminum Extrusion Alloys ... 522
 Profile Types .. 523
 Classes of Profiles ... 523
 Process of Aluminum Extrusion ... 524
Equal-Channel Angular Extrusion .. 528
 Phenomenology of Severe Plastic Deformation 528
 Mechanics of Equal-Channel Angular Extrusion 529
 Multipass Equal-Channel Angular Extrusion 530
Characteristics of Processing 531
Tool Design ... 532
Structural Effects 533
Effect on Properties 534
Applications ... 535
Microstructure Evolution, Constitutive Behavior, and Workability

Plastic Deformation Structures

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plastic Deformation in Crystals</td>
<td>539</td>
</tr>
<tr>
<td>Amount of Deformation</td>
<td>542</td>
</tr>
<tr>
<td>Composition</td>
<td>544</td>
</tr>
<tr>
<td>Deformation Modes</td>
<td>545</td>
</tr>
<tr>
<td>Low Temperature and High Strain Rate</td>
<td>548</td>
</tr>
<tr>
<td>Elevated Temperatures</td>
<td>549</td>
</tr>
</tbody>
</table>

Constitutive Equations

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strain Hardening (Ref 1)</td>
<td>563</td>
</tr>
<tr>
<td>Strain Rate Effects (Ref 4)</td>
<td>563</td>
</tr>
<tr>
<td>Isothermal Constitutive Model (Ref 12)</td>
<td>565</td>
</tr>
<tr>
<td>Dynamic Recovery</td>
<td>570</td>
</tr>
<tr>
<td>Diffusional Flow Mechanisms</td>
<td>574</td>
</tr>
<tr>
<td>Physical Model for Superplastic Flow</td>
<td>579</td>
</tr>
</tbody>
</table>

Recovery, Recrystallization, and Grain-Growth Structures

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Deformed State</td>
<td>552</td>
</tr>
<tr>
<td>Recovery</td>
<td>553</td>
</tr>
<tr>
<td>Recrystallization</td>
<td>554</td>
</tr>
<tr>
<td>Grain Growth</td>
<td>557</td>
</tr>
<tr>
<td>Microstructure Evolution during Hot Working (Ref 15)</td>
<td>559</td>
</tr>
</tbody>
</table>

Evaluation of Workability for Bulk Forming Processes

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Curves</td>
<td>587</td>
</tr>
<tr>
<td>Material Factors Affecting Workability</td>
<td>591</td>
</tr>
<tr>
<td>Process Variables Determining Workability</td>
<td>594</td>
</tr>
<tr>
<td>Workability Fracture Criteria</td>
<td>596</td>
</tr>
<tr>
<td>Workability Tests</td>
<td>602</td>
</tr>
<tr>
<td>Finite-Element Modeling in Workability Analysis</td>
<td>610</td>
</tr>
</tbody>
</table>

Conclusions

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conclusions</td>
<td>612</td>
</tr>
</tbody>
</table>
Modeling and Computer Aided Process Design for Bulk Forming

Finite Element Method Applications in Bulk Forming
- Historical Overview .. 617
- Methodologies ... 618
- Primary Materials Processing Applications 619
- Hot Forging Applications ... 621
- Cold Forming Applications 624
- Fracture Prediction ... 627
- Die Stress Analysis ... 630
- Product Assembly ... 632
- Optimization of Forging Simulations 634
- Conclusion ... 637

Design Optimization for Dies and Preforms
- Composing the Objective Function 640
- Calculation of the Objective Function 641
- Search for Optimum ... 642
- Summary ... 644

Rapid Tooling for Forging Dies
- Direct Rapid Tooling ... 645
- Indirect Rapid Tooling .. 646

Workpiece Materials Database
- Stress-Strain Curves ... 651
- Thermomechanical Properties 655

Models for Predicting Microstructural Evolution
- Microstructural Knowledge Base 661
- Black-Box Modeling ... 663
- Gray-Box Modeling ... 663
- White-Box Modeling .. 666
- Hybrid Models ... 667
- Conclusions .. 669

Polycrystal Modeling, Plastic Forming, and Deformation

Textures
- Crystallographic Anisotropy and the Yield Surface 671
- Texture Evolution and the Kinematics of Lattice Rotation 673
- Description of Texture ... 673
- Models for Texture Development 674
- Simple Applications of Polycrystal Models 676
- Using Polycrystal Constitutive Descriptions to Simulate Complex Forming .. 679

Transformation and Recrystallization Textures Associated with Steel Processing
- General Introduction on Crystallographic Textures 685
- Hot Band Textures .. 685
- Cold Rolling and Annealing Textures 689
- General Conclusions ... 698

© 2005 ASM International. All Rights Reserved.
Resource Information

Useful Formulas for Deformation Analysis and Workability
 Testing .. 827
Glossary of Terms .. 831
Steel Hardness Conversions 852
Nonferrous Hardness Conversions 858
Metric Conversion Guide 861
Abbreviations and Symbols 864
Index ... 868
Contents

For a more detailed Table of Contents, see page ix

Introduction ... 1
Introduction to Bulk-Forming Processes ... 3
Design for Deformation Processing ... 11

Forging Equipment and Dies ... 21
Hammers and Presses for Forging ... 23
Selection of Forging Equipment .. 36
Dies and Die Materials for Hot Forging ... 47
Die Wear ... 62
Lubricants and their Applications in Forging .. 84
Die Manufacturing and Finishing ... 93

Forging Processes .. 97
Open-Die Forging ... 99
Closed-Die Forging in Hammers and Presses ... 111
Hot Upset Forging .. 119
Roll Forging .. 131
Ring Rolling .. 136
Rotary Swaging of Bars and Tubes .. 156
Radial Forging ... 172
Rotary Forging ... 179
Isothermal and Hot-Die Forging ... 183
Precision Hot Forging .. 193
Coining ... 198
Powder Forging ... 205
Practical Aspects of Converting Ingot to Billet ... 227

Forging of Steels and Heat-Resistant Alloys .. 239
Forging of Carbon and Alloy Steels .. 241
Forging of Stainless Steels .. 261
Forging of Heat-Resistant Alloys ... 269
Forging of Refractory Metals ... 284
Thermomechanical Processing for Ferrous Alloys 286

Forging of Nonferrous Metals .. 297
Forging of Aluminum Alloys .. 299
Forging of Copper and Copper Alloys ... 313
Forging of Magnesium Alloys .. 318
Forging of Nickel-Base Alloys .. 324
Forging of Titanium Alloys ... 331
Bulk Forging of Intermetallic Alloys .. 354
Forging of Discontinuously Reinforced Aluminum Composites 366
Thermomechanical Processes for Nonferrous Alloys 374

Cold Heading and Cold Extrusion .. 381
Cold Heading ... 383
Cold Extrusion ... 405

Other Bulk Forming Processes .. 419
Conventional Hot Extrusion .. 421
Hydrostatic Extrusion .. 440
Wire, Rod, and Tube Drawing ... 448
Flat, Bar, and Shape Rolling .. 459
Roll Forming of Axially Symmetric Components 480
Thread Rolling .. 489
Coextrusion .. 505
Flow Forming ... 516
Extrusion of Aluminum Alloys ... 522
Equal Channel Angular Extrusion .. 528

Microstructure Evolution, Constitutive Behavior, and Workability 537
Plastic Deformation Structures ... 539
Recovery, Recrystallization, and Grain-Growth Structures 552
Constitutive Equations .. 563
Evaluation of Workability for Bulk Forming Processes 587

Modeling and Computer Aided Process Design for Bulk Forming 615
Finite Element Method Applications in Bulk Forming 617
Design Optimization for Dies and Preforms ... 640
Rapid Tooling for Forging Dies ... 645
Workpiece Materials Database .. 651
Models for Predicting Microstructural Evolution 660
Poly-crystal Modeling, Plastic Forging, and Deformation Textures 671
Transformation and Recrystallization Textures Associated with Steel Processing ... 685

Forging Design ... 701
Forging Design Involving Parting Line and Grain Flow 703
Forging Design Involving Draft .. 727
Forging Design Involving Ribs and Bosses .. 741
Design Involving Corners and Fillets ... 759
Forging Design Involving Webs ... 775
Forging Design Involving Cavities and Holes ... 793
Forging Design Involving Flash and Trim .. 812
Forging Design Dimensions and Tolerances ... 820

Resource Information .. 825
Useful Formulas for Deformation Analysis and Workability Testing 827
Glossary of Terms ... 831
Steel Hardness Conversions .. 852
Nonferrous Hardness Conversions ... 858
Metric Conversion Guide ... 861
Abbreviations and Symbols ... 864
Index ... 868
ASM International is the society for materials engineers and scientists, a worldwide network dedicated to advancing industry, technology, and applications of metals and materials.

ASM International, Materials Park, Ohio, USA
www.asminternational.org

This publication is copyright © ASM International®. All rights reserved.

<table>
<thead>
<tr>
<th>Publication title</th>
<th>Product code</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASM Handbook, Volume 14A, Metalworking:</td>
<td>06957G</td>
</tr>
<tr>
<td>Bulk Forming</td>
<td></td>
</tr>
</tbody>
</table>

To order products from ASM International:

Online Visit www.asminternational.org/bookstore

Telephone 1-800-336-5152 (US) or 1-440-338-5151 (Outside US)

Fax 1-440-338-4634

Mail
Customer Service, ASM International
9639 Kinsman Rd, Materials Park, Ohio 44073, USA

Email CustomerService@asminternational.org

American Technical Publishers Ltd.
27-29 Knowl Piece, Wilbury Way, Hitchin Hertfordshire SG4 0SX, United Kingdom

Telephone: 01462 437933 (account holders), 01462 431525 (credit card)
www.ameritech.co.uk

Neutrino Inc.
Takahashi Bldg., 44-3 Fuda 1-chome, Chofu-Shi, Tokyo 182 Japan

Telephone: 81 (0) 424 84 5550

Terms of Use. This publication is being made available in PDF format as a benefit to members and customers of ASM International. You may download and print a copy of this publication for your personal use only. Other use and distribution is prohibited without the express written permission of ASM International.

No warranties, express or implied, including, without limitation, warranties of merchantability or fitness for a particular purpose, are given in connection with this publication. Although this information is believed to be accurate by ASM, ASM cannot guarantee that favorable results will be obtained from the use of this publication alone. This publication is intended for use by persons having technical skill, at their sole discretion and risk. Since the conditions of product or material use are outside of ASM's control, ASM assumes no liability or obligation in connection with any use of this information. As with any material, evaluation of the material under end-use conditions prior to specification is essential. Therefore, specific testing under actual conditions is recommended.

Nothing contained in this publication shall be construed as a grant of any right of manufacture, sale, use, or reproduction, in connection with any method, process, apparatus, product, composition, or system, whether or not covered by letters patent, copyright, or trademark, and nothing contained in this publication shall be construed as a defense against any alleged infringement of letters patent, copyright, or trademark, or as a defense against liability for such infringement.