Contents

Preface ... ix

Introduction .. 1

Principles of Alloying ... 3
Introduction and Overview 3
Alloying for Mechanical Properties 3
Alloying for Service Properties 8
Alloying for Processing Properties 10
Alloying for Physical Properties 12
Effect of Properties on Alloying 14
Alloying Techniques ... 15
Surface Alloying ... 16

Cast Irons ... 19
Gray Irons ... 21
Introduction and Overview 21
Composition Control .. 23
Alloying Practices .. 27
Effects of Alloying on Properties 30
Effects of Inoculation on Properties 32
Effects of Alloying on Elevated-Temperature Properties 34
Effects of Alloying on Corrosion Behavior 47
Effects of Alloying on Annealing 50
Effects of Alloying on Normalizing 52
Effects of Alloying on Hardenability 53
Effects of Alloying on Flame Hardening 53
Effects of Alloying on Stress Relieving 54
High-Silicon Gray Irons for High-Temperature Service 55
High-Silicon Gray Irons for Corrosion Resistance 57
Austenitic Nickel-Alloyed Gray Irons 59
Ductile Irons ... 62
Introduction and Overview 62
Composition Control and Effects of Alloying Elements 68
Magnesium Treatment ... 73
Effects of Inoculation on Properties 73
Effects of Alloying on Hardenability 74
Effects of Alloying on Normalizing 75
Effects of Alloying on Austempering .. 80
Effects of Alloying on Corrosion Behavior 81
Austenitic Nickel-Alloyed Ductile Irons 81
High-Silicon Ductile Irons ... 86
Compacted Graphite Irons ... 91
Introduction and Overview ... 91
Composition Requirements and Control 93
Effects of Alloying on Properties .. 96
Malleable Irons ... 100
Introduction and Overview ... 100
Effects of Alloying Elements .. 101
High-Alloy White Irons .. 107
Introduction and Overview ... 107
Effects of Alloying Elements and Inoculants 110
Carbon and Alloy Steels ... 121
Carbon and Alloy Steels ... 123
Introduction and Overview ... 123
Effects of Alloying and Residual Elements 134
Effects of Carbon Content and Alloying on Hardenability 143
Effects of Alloying on Notch Toughness 150
Effects of Alloying on Fatigue Resistance 159
Alloying for Low-Temperature Service 162
Alloying for High-Temperature Service 162
Effects of Alloying on Tempering ... 164
Effects of Alloying on Corrosion Behavior 169
Effects of Alloying on Wear Behavior 176
Effects of Alloying on Formability .. 178
Effects of Alloying onForgeability ... 180
Effects of Alloying on Weldability .. 181
Effects of Alloying on Machinability .. 185
High-Strength Low-Alloy Steels ... 193
Introduction and Overview ... 193
Effects of Microalloying Additions .. 197
Effects of Microalloying on Processing Characteristics 206
Tool Steels ... 210
Introduction and Overview ... 210
Wrought High-Speed Tool Steels ... 213
Wrought Hot-Worked Tool Steels .. 219
Wrought Cold-Work Tool Steels ... 220
Effects of Alloying on the Characteristics of Other
 Non-Machining Wrought Tool Steel Grades 222
P/M High-Speed Tool Steels ... 223
P/M Cold-Work Tool Steels .. 227
P/M Wear/Corrosion-Resistant Tool Steels 230
Maraging Steels .. 234
Introduction and Overview ... 234
Commercial Alloys ... 235
Stainless Steels and Heat-Resistant Alloys

Stainless Steels
- Introduction and Overview
- Families of Stainless Steels
- Effects of Alloying on Corrosion Behavior
- Effects of Alloying on Oxidation Resistance

Superalloys
- Introduction and Overview
- Phases, Structures, and Alloying Elements Associated with Superalloys
- Superalloy Systems
- Properties and Microstructure
- Mechanical Alloying
- Effects of Alloying Elements and Intermetallic Phases on Welding

Refractory Metal Alloys
- Introduction and Overview
- Molybdenum and Molybdenum Alloys
- Tungsten and Tungsten Alloys
- Niobium and Niobium Alloys
- Tantalum and Tantalum Alloys
- Rhenium and Rhenium-Bearing Alloys

Ordered Intermetallics
- Introduction and Overview
- Nickel Aluminides
- Iron Aluminides
- Titanium Aluminides

Light Metals and Alloys

Aluminum and Aluminum Alloys
- Introduction and Overview
- Wrought Alloy Classes
- Cast Alloy Classes
- Alloying and Second-Phase Constituents
- Effects of Specific Alloying Elements and Impurities
- Alloying Effects on Phase Formation
- Grain Refiners

© 2001 ASM International. All Rights Reserved.
Alloying: Understanding the Basics (#06117G)
www.asminternational.org
Alloying Elements that Modify and Refine Hypoeutectic
 Al-Si Alloys ... 392
Use of Phosphorus to Refine Hypereutectic Al-Si Alloys 397
Effects of Alloying on Corrosion Behavior 398
Effects of Alloying on Wear Behavior 404
Effects of Alloying on Processing 407
Titanium and Titanium Alloys ... 417
 Introduction and Overview 417
 Physical Metallurgy ... 418
 Effects of Alloy Elements 419
 Alloy Systems and Their Processing Characteristics 421
 Effects of Alloying on Corrosion Behavior 424
 Effects of Alloying on Resistance to Stress-Corrosion Cracking .. 427
Magnesium and Magnesium Alloys 432
 Introduction and Overview 432
 Commercial Alloy Systems 435
 Alloing Practices ... 437
 Effects of Alloying Elements on Properties and Processing 438
 Effects of Alloying on Properties of Specific Die Casting
 Alloys .. 440
 Effects of Alloying on Corrosion Behavior 442
 Effects of Alloying on Stress-Corrosion Cracking Behavior 446
 Alloing Effects on Physical Properties 450
 Effects of Alloying on Processing 451

Other Nonferrous Alloys .. 455

Copper and Copper Alloys ... 457
 Introduction and Overview 457
 Wrought Copper and Copper Alloy Families 459
 Copper Casting Alloy Families 468
 Effects of Impurities or Alloing on Electrical Conductivity 477
 Effects of Alloying on Corrosion Resistance 479
 Effects of Alloying on SCC Resistance 483
 Effects of Alloying on Weldability 486
 Effects of Alloying on Brazeability and Solderability 488
 Effects of Alloying on Machinability 489
 Effects of Alloying on Workability and Castability 492
Nickel and Nickel Alloys ... 495
 Introduction and Overview 495
 Categories of Nickel and Nickel Alloys 496
 The Nickel and Nickel Alloy Family 497
 Effects of Alloying on Corrosion Resistance 507
 Effects of Alloying and Intermetallic Phases on Processing 513
Zinc and Zinc Alloys .. 520
 Introduction and Overview 520
 Zinc Casting Alloys .. 521
 Wrought Zinc and Zinc Alloys 525
Alloying may be defined as “the process of adding one or more elements or compounds to interact with a base metal in order to obtain beneficial changes in its mechanical, physical, or chemical properties or manufacturing/processing characteristics.” For the purposes of this publication, the definition has been limited to those alloying processes that affect the bulk of the material; therefore, surface alloying processes such as carburizing, nitriding, ion implantation, and hot dip galvanizing are not covered. However, elements or compounds that lead to a preferential microstructure and subsequent improved properties are covered. Examples of these are grain refiners (grain refining results in better forming or higher strength), inoculants added to molten cast irons to produce changes in graphite distribution and improvements in mechanical properties, magnesium-containing nodulizing (or spheroidizing) additions in ductile irons for high strength and ductility (up to 18% elongation), and the addition of certain elements, such as calcium, sodium, strontium, and antimony, to refine the structure of aluminum-silicon casting alloys as well as improve their tensile properties and ductility. Also included are discussions of some powder metallurgy (P/M) materials that technically may fall outside the definition of alloying given above. An example is copper-base dispersion strengthened materials. Copper can be strengthened by using fine dispersed particles of aluminum oxide. Because this oxide is not immiscible in liquid copper (i.e., it does not “interact”), dispersion-strengthened copper cannot be made by conventional ingot metallurgy and alloying techniques; P/M techniques must be used. Dispersion-strengthened superalloys made by “mechanical alloying” are also described.

Although emphasis has been placed on deliberate alloying additions (minor or major alloying elements), the effects of trace or tramp elements are also summarized. Such impurities can have a profound affect on processing and properties of metals and their alloys. For example, impurity levels in the parts per million range can significantly lower the electrical conductivity of copper.
I wish to thank a number of people who provided invaluable assistance throughout this project. The introductory article, “Principles of Alloying,” was authored by Hugh Baker, consulting editor to ASM and a longtime contributor to the ASM Handbook and Phase Diagram programs. I have had the privilege of working with Hugh for some twenty years. Thanks are also extended to Larry Korb (Rockwell International), an ASM Fellow and past Chairman of the ASM Handbook Committee. Larry was instrumental in defining the scope of the book and supplied material for several articles, including those on carbon and low-alloy steels and aluminum alloys. Finally, the helpful comments and assistance from the ASM Editorial staff are acknowledged. In particular, I would like to thank Steve Lampman from Technical Publications for his involvement in the early stages of the project.

Joseph R. Davis
Davis & Associates
Chagrin Falls, Ohio