No part of these proceedings may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the written permission of the copyright owner.

Great care is taken in the compilation and production of these proceedings, but it should be made clear that NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE GIVEN IN CONNECTION WITH THIS PUBLICATION. Although this information is believed to be accurate by ASM, ASM cannot guarantee that favorable results will be obtained from the use of this publication alone. This publication is intended for use by persons having technical skill, at their sole discretion and risk. Since the conditions of product or material use are outside of ASM’s control, ASM assumes no liability or obligation in connection with any use of this information. No claim of any kind, whether as to products or information in this publication, and whether or not based on negligence, shall be greater in amount than the purchase price of this product or publication in respect of which damages are claimed. THE REMEDY HEREBY PROVIDED SHALL BE THE EXCLUSIVE AND SOLE REMEDY OF BUYER, AND IN NO EVENT SHALL EITHER PARTY BE LIABLE FOR SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES WHETHER OR NOT CAUSED BY OR RESULTING FROM THE NEGLIGENCE OF SUCH PARTY. As with any material, evaluation of the material under end-use conditions prior to specification is essential. Therefore, specific testing under actual conditions is recommended.

Nothing contained in these proceedings shall be construed as a grant of any right of manufacture, sale, use, or reproduction, in connection with any method, process, apparatus, product, composition, or system, whether or not covered by letters patent, copyright, or trademark, and nothing contained in this proceedings shall be construed as a defense against any alleged infringement of letters patent, copyright, or trademark, or as a defense against liability for such infringement.

Comments, criticisms, and suggestions are invited, and should be forwarded to ASM International.
Heat Treat 2013 Organizing Committee

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization/Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robert C. Goldstein</td>
<td>Fluxtral, Inc.</td>
</tr>
<tr>
<td>Fred R. Specht</td>
<td>Ajax TOCCO Magnethermic</td>
</tr>
<tr>
<td>Aquil Ahmad</td>
<td>Eaton Corporation</td>
</tr>
<tr>
<td>Andrew Banka,</td>
<td>Airflow Sciences Corporation</td>
</tr>
<tr>
<td>Dr. B. Lynn Ferguson, FASM</td>
<td>Deformation Control</td>
</tr>
<tr>
<td>Dr. Lesley D. Frame</td>
<td>Manager Of Materials</td>
</tr>
<tr>
<td>D. Scott Mackenzie</td>
<td>Houghton International</td>
</tr>
<tr>
<td>Roger Jones, Board Liaison</td>
<td>Solar Atmospheres Incorporated</td>
</tr>
<tr>
<td>Dr. Rajiv Ahuja</td>
<td>HEF USA</td>
</tr>
<tr>
<td>Frederick Diekman</td>
<td>Controlled Thermal Processing</td>
</tr>
<tr>
<td>Stephen Fitch</td>
<td>Timken</td>
</tr>
<tr>
<td>Kiyoshi Funatani</td>
<td>IMST Instrument</td>
</tr>
<tr>
<td>David A. Guisbert</td>
<td>QA Metallurgical Services LLC</td>
</tr>
<tr>
<td>Rozalia Papp</td>
<td>Air Liquide US LP</td>
</tr>
<tr>
<td>Michael A. Pershing</td>
<td>Caterpillar Incorporated</td>
</tr>
<tr>
<td>Terry Profughi</td>
<td>Hi Tec Metal Group</td>
</tr>
<tr>
<td>Stephen Hazelbaker</td>
<td>Prince Izant</td>
</tr>
<tr>
<td>Daniel H. Herring</td>
<td>The HERRING GROUP, Inc.</td>
</tr>
<tr>
<td>Robert Hill</td>
<td>Solar Atmospheres, Inc.</td>
</tr>
<tr>
<td>Scott G. Paul</td>
<td>Metallurgical Engineer</td>
</tr>
<tr>
<td>George D. Pfaffmann, FASM</td>
<td>Ajax TOCCO Magnethermic</td>
</tr>
<tr>
<td>Dale J. Weires</td>
<td>Technical Fellow</td>
</tr>
</tbody>
</table>
Preface

The online proceedings contains extended abstracts of presentations made at the 27th ASM Heat Treating Society Conference and Exposition in Indianapolis, Indiana, USA, September 16–18, 2013. The event shared location with AGMA's Gear Expo and Fall Technical Meeting, so many of the presentations focused on heat treatment and surface engineering of gears. Heat treating is a value added step in the manufacture of parts, especially for critical parts such as gears, bearings, and shafts. The many presentations covered a wide variety of hardening and surface treatment processes, atmosphere technologies, brazing processes, heating innovations, global and environmental issues, quenching and cooling technology, vacuum technology, and emerging heat treating technologies.

On behalf of the Heat Treating Society Technology and Programming Committee, we want to thank the authors of these extended abstracts and papers for their submissions. These articles help the Heat Treating Society (HTS) in many ways. First, they provide reference material for the attendees to aid in their understanding and retention of presented materials. Second, they help HTS reach people who were unable to attend the conference but want to stay abreast of what is happening in our industry. Third, they collectively provide direction to our industry in terms of identifying needs, current technical and equipment capabilities, and point toward future developments.

Extended abstracts are more than abstracts. They contain key statements, figures, tables and conclusions in a concise format. They represent the latest in state-of-the-art heat treating materials, processes, products, equipment, and methodology. The topics cover the depth of our industry and will be a valuable reference for years to come. Please see the fall issue of ASM International's Journal of Materials Engineering and Performance (JMEP) as it contains full papers for many of these extended abstracts.

This conference was a joint effort and we wish to especially thank the members of the Heat Treating Society Board, the Heat Treating Society Technology and Programming Committee, and the Exposition Committee for their inspiration, guidance and tireless efforts to identify, solicit, and encourage industry experts to share their knowledge and expertise with the heat treating world. We as individuals and as an industry profit from the effort of these volunteers and the many hours they devote to advancing the science and business of heat treating.

The opportunity to Co-Chair this Conference and Exposition as well as to bring you the 2013 Heat Treating Proceedings has truly been our pleasure and privilege. Thank you for allowing us this opportunity.

27th ASM Heat Treating Society Conference and Exposition Co-Chairmen

B. Lynn Ferguson
Deformation Control Technology, Inc.

Rob Goldstein
Fluxtrol, Inc.
Contents

Organizing Committee

Preface

Atmospheres

Advanced On-Site Hydrogen Generation Provides Enhanced Capabilities
Dave Wolff¹, Randy Gorman², Mike Wood², and Adam Herringshaw²
(1) Proton OnSite, Wallingford, CT, USA
(2) Riverhawk Company, New Hartford, NY, USA

Case Hardening Using Nitrogen-Based Atmospheres
Zbigniew Zurecki¹ and Karl-Michael Winter²
(1) Air Products & Chemicals, Inc., Allentown, PA, USA
(2) Process-Electronic GmbH, Heiningen, Germany

Understanding Atmosphere in Carburizing Applications Using
Simulation and Real-Time Carbon Diffusion
Jim Oakes, Super Systems, Inc., Cincinnati, OH, USA

Brazing

Dynamic Fluoride Ion Cleaning as A Pre-Braze Process
Robert E. Kornfeld
Hi-Tech Furnace Systems, Inc., Shelby Township, MI, USA

Welding Behavior of Molybdenum Tubing With and Without Lanthanum Oxide
Todd Leonhardt, Rhenium Alloys Inc., North Ridgeville, OH, USA

Cryogenics

Comparisons of Deep Cryogenically Treated Brake Rotors versus Untreated
Rotors Using Laboratory Tests and Practical Tests
Frederick (Rick) J. Diekman
Controlled Thermal Processing, Inc., Antioch, IL, USA

Cryogenic Non Destructive Testing (NDT) and Material Treatment
Cryogenic Transition Detection
Victor F. Sloan
Victor Aviation Service, Inc., Palo Alto, CA, USA

New Frontiers in Metal Treatment—Deep Cryogenic Treating of
Metals and Other Materials
Rozalia Papp, Air Liquide U.S. LP, Houston, TX, USA
Emerging Technologies

Austempering versus Quenching and Tempering—Impact Behavior of SAE 4140 and SAE O1 Steels

Lauralice de C. F. Canale¹, José E. Nucci¹; Jan Vatavuk², and George E. Totten³
(1) University of São Paulo, São Carlos, SP, Brazil
(2) Universidade Presbiteriana Mackenzie, São Paulo, SP, Brazil
(3)Portland State University, Portland, OR, USA

Calculate Allowable Stress—Quit Factor of Safety
Nori VSN Murthy, Independent Researcher, India

Delta Ferrite in Heat Treated Bolts—Characterization and Consequences
Robson Bussoloti¹, George E. Totten², and Lauralice de C. F. Canale¹
(1)Escola de Engenharia de São Carlos, São Carlos, SP, Brazil
(2) Portland State University, Portland, OR, USA

Is There A Viable Alternative to Refractory Ceramic Fibers?
Chris Johnson and William Patton
Thermal Ceramics business of Morgan Advanced Materials, Augusta, GA, USA

Self-Heating of Powder Materials during High-Temperature Drying
Muhammad M. Rafique Qureshi
Chilworth Technology, Inc., Princeton, NJ, USA

The Effects of Tempering on The Hardness Profiles in Carburized Steels
Lei Zhang, Xiaoqing Cai, Mei Yang, and Richard D. Sisson, Jr
Worcester Polytechnic Institute, Worcester, MA, USA

Equipment Innovations

Batch Integral Quench Furnace Innovations—Heating, Quenching, Automation
Ralph P. Poor, Surface Combustion, Inc., Maumee, OH, USA

Bright Tempering—Achieving High Quality Appearance During Tempering
Aymeric Goldsteinas and Craig Moller, Ipsen, Inc., Cherry Valley, IL USA

Dual Processes’ Normalize and Anneal Temperature Uniformities in Box Furnaces
William J. Bernard, III, Surface Combustion, Inc., Maumee, OH, USA

Heat Treating with Diode Lasers
Mark Daichendt¹ and Wolfgang Todt²
(1) Laserline GmbH, Muelheim-Kaerlich, Germany
(2) Laserline, Inc., Santa Clara, CA, USA
Investigation on Improving The Life of Immersion Burner Tubes in Industrial Furnaces
R. Krishna Sabareesh, P. Ragupathy, Sudhir Malavade, Shishir Desai, Rajesh Mohite, Devendra Patil, Suresh Gulavani, and Joseph Lopes
Tata Steel Global Wire Division, Maharashtra, India

Monitoring, Understanding, and Reducing Energy in Heat Treat
Michael A. Pershing, David M. Miller, and Kinyon Gorton
Caterpillar Inc., East Peoria, IL, USA

Trial to Determine The Suitability of The New Heat Treat Facility at Corry Forge Company for Processing Blowout Preventer Bodies
Jared C. Alexander, Corry Forge Company, Corry, PA, USA

Global Issues

Environmental Friendly Controlled Cooling of Forgings—Potential Replacement to Normalizing and Iso-Annealing
Udayan Pathak and Vikas Shingade
Tata Motors Limited Pune, India

Teri Buck1, Suranjeeta Dhar2, Medina Kaknjo2, Philip Mikula3
(1) TRW Automotive, Livonia, MI, USA
(2) Ford Motor Company, Allen Park, MI, USA
(3) P.C. Mikula Consulting LLC, Grosse Point Woods, MI, USA

Web Based Wireless Heat Treating Services
Tom Decker1 and Eric Sjerve2
(1) Thermal Technologies International Inc., Claremore, OK, USA
(2) IRISNDT Corp., Alberta, Canada

Induction Heating

Control Systems for Induction Heat Treating—The Obsolete and Newest Designs
Fred R. Specht
Ajax Tocco Magnethermic Corp., Warren, OH, USA

Enhancing Induction Coil Reliability
K. Kreter, R. Goldstein, C. Yakey, and V. Nemkov
Fluxtrol Inc., Auburn Hills, MI, USA

In-Line Induction Heat Treating of Tube, Pip, and Bar Products
Lesley D. Frame, ThermaTool Corp., East Haven, CT, USA
Influence of Geometric Parameters on Residual Stress in Hollow Cylindrical Parts Subjected to Induction Surface Hardening
Dmitry Ivanov, Leif Markegård, and John Inge Asperheim
EFD Induction a.s., Skien, Norway

Innovations in Soft Magnetic Composites and Their Applications in Induction Systems
R. Ruffini, N. Vyshinskaya, V. Nemkov, R. Goldstein, and C.J. Yakey
Fluxtrol Inc., Auburn Hills, MI, USA

Novel User-Friendly Computer Modeling Software for Induction Heating and Induction Heat Treating
Valery Rudnev, Inductoheat, Inc., Madison Heights, MI, USA

Effect of Spray Quenching Rate on Distortion and Residual Stresses during Induction Hardening of A Full-Float Truck Axle
Zhichao (Charlie) Li¹, B. Lynn Ferguson¹, Valentin Nemkov², Robert Goldstein², John Jackowski², and Greg Fett³
(1) Dante Software, Cleveland, OH, USA
(2) Fluxtrol, Inc., Auburn Hills, MI, USA
(3) Dana Corporation, Maumee, OH, USA

Process Innovation to Eliminate Cracking Problems in Large Diameter Parts with Nonuniform Wall Thickness
Zhichao (Charlie) Li and B. Lynn Ferguson
Dante Software, Cleveland, OH, USA

Materials Selection for Induction Hardening Processes
Fred R. Specht, Ajax-Tocco-Magnethermic, Warren, OH, USA

Masters Series

The Jominy End Quench and Effect of Austenitizing on The Hardenability and Performance of Quenched Steels
George Krauss, Colorado School of Mines, Golden, CO, USA

Nitriding & Carburizing

Effect of Plasma Nitriding on Fatigue and Wear Behavior of AISI4330 Low Alloy Steel
Jagdish Sherkar¹, Rajkumar Singh¹, Raju Kadam¹, Ganesh Jawale¹, and Ram Chandra Prasad²,
(1) Bharat Forge Ltd., Maharashtra State, India
(2) Indian Institute of Technology Bombay, Maharashtra State, India

A Practical Approach to Controlling Gas Nitriding and Ferritic Nitrocarburizing (FNC) Processes
Stephen Thompson, Super Systems, Inc., Cincinnati, OH, USA
An Investigation of Case-Core Separation in Carburized Steels
Sarah Byrnes, Claire A. Campbell, and Timothy De Hennis
The Boeing Company, Philadelphia, PA, USA

Analysis and Experience using Process Modeling for Developing
New and Corrective Heat Treat Schedules for Deep Case Carburizing
Andrew M. Freborg and B. Lynn Ferguson
Dante Software, Cleveland, OH, USA

Influence of Steel Surface Roughness on The Nitrogen
Uptake during Gaseous Nitriding Process
D. Koshel and J. Kalucki, Nitrex Metal Inc., QC, Canada

Modeling The Carbonitriding of Steel
Mei Yang, Xiaolan Wang, Yuan Xu, Liang He, and Richard D. Sisson Jr.
Worcester Polytechnic Institute, Worcester, MA, USA

Modeling The Gas Nitriding Process for Steels
Mei Yang, Xiaolan Wang, and Richard D. Sisson Jr.
Worcester Polytechnic Institute, Worcester, MA, USA

Ferritic Nitrocarburizing Processes and Applications
Benjamin T. Bernard, Surface Combustion, Inc., Maumee, OH, USA

Numerical Simulation Advances in Gear Manufacturing Processes
James B. Miller, Ravi Shankar, and John Walters
Scientific Forming Technologies Corp., Columbus, OH, USA

Processes and Applications

Advances in Eddy Current Verification of Heat Treat Processes
Dan DeVries, Criterion NDT, Auburn, WA, USA

Banding Effect on The Hardenability of AISI 4340 Steel Bar—Case Study
Jan Vatavuk¹, Antonio Augusto Couto¹, Silvio André de Lima Pereira², Silas Aragão de Sousa², and Lauralice de C. F. Canale³
(1) Universidade Presbiteriana Mackenzie, SP, Brasil
(2) Mahle Metal Leve S.A. Centro Tecnológico, SP, Brasil
(3) Escola de Engenharia de São Carlos, SP, Brasil

Evaluation of A New Alloy (PremoMet) for Seamless Rings Application
Octavio Covarrubias-Alvarado¹, Arisbeth Sias-Chacon¹, and Alberto Perez-Unzueta²
(1) Frisa Forjados SA de CV, Nuevo Leon, Mexico
(2) Universidad Autonoma de Nuevo Leon, Nuevo Leon, Mexico
Improvement in Mechanical Properties of Austempered Ductile Iron (ADI) by Cryogenic Treatment

Susil K. Putatunda1, Saranya Panneerselvam1, Codrick J Martis1, Frederick Diekman2, and Rozalia Papp3

(1) Wayne State University, Detroit, MI, USA
(2) Controlled Thermal Processing Inc., Park City, IL, USA
(3) Air Liquide US LP, Countryside, IL, USA

Improving New and Existing Heat Treat Processes

Joe Clarke, Invensys Eurotherm, Ashburn, VA, USA

Localized Surface Modification on 1018 Low Carbon Steel by Electrolytic Plasma Process and its Impact on Corrosion Behavior

Jiandong Liang, Shengmin Guo, and Muhammad A. Wahab

Modeling Precipitation Kinetics during Heat Treatment with Calphad-Based Tools

Kaisheng Wu1, Paul Mason1, Gustaf Sterner2, and Qing Chen2

(1) Thermo-Calc Software Inc., McMurray, PA, USA
(2) Thermo-Calc Software AB, Stockholm, Sweden

Novel Method of Removal and Tightening of Bolts

Tom Decker1 and Eric Sjerve2

(1) Thermal Technologies International Inc., Claremore, OK, USA
(2) IRISNDT Corp., AB, Canada

Protective Atmospheres, Measurement Technologies, and Troubleshooting Tools

Damian Bratcher, Super Systems, Inc., Cincinnati, OH, USA

How important is Accuracy in Today’s World! Technology and Improvements in Analog and Digital Control

Steve Miller, Invensys Eurotherm, Ashburn, VA, USA

Technology to Connect and Enhancements to Improve

Chris Mooney, Invensys Eurotherm, Ashburn, VA, USA

Quenching and Cooling

Characterizing Water Quenching Systems with A Quench Probe

B. Lynn Ferguson, Zhichao Li, and Andrew M. Freborg
Deformation Control Technology, Inc., Cleveland, OH, USA

Agitated Quench Heat Transfer—An Experimental Characterization

Andrew L. Banka, William H. Newsome, and Jeffrey D. Franklin
Airflow Sciences Corp., Livonia, MI, USA

Comparison of Nozzle versus Impeller Agitation in Quench Systems

Andrew L. Banka and Tiffany M. Lee
Airflow Sciences Corp., Livonia, MI, USA
Design and Optimization of Fixture for High Pressure Gas Quenching of Transmission Components
Junsheng Wang1, Xuming Su1, Mei Li1, Ronald Lucas2, and William Dowling2
(1) Ford Research and Advanced Engineering Lab, Dearborn, MI, USA
(2) Powertrain Manufacturing Engineering, Livonia, MI, USA

Development of Quench Tank Agitation Design Using CFD Modeling
Andrew L. Banka1, John D. Nitz1, and Jeffery Nystrom2
(1) Airflow Sciences Corp., Livonia, MI, USA
(2) Corry Forge Company, Corry, PA, USA

Fixture Hardening of Large Components
Gerd Müller-Laessig
HEESS GmbH & Co KG, Lampertheim, Germany

Flexible Controlled Atmosphere Hardening Processes Utilizing Atmosphere Furnaces and Salt Quenching Systems
Charles Hartwig1 and John W. Gottschalk2
(1) Therm-Tech of Waukesha, Inc., Waukesha, WI, USA
(2) Surface Combustion, Inc., Maumee, OH, USA

Numerical Investigation of Immersion Quenching Process for Cast Aluminum Parts Using An Eulerian Multi-Fluid Approach
R. Kopun1, D. Greif1, Z. Kovačič1, and R. Tatschl2
(1) AVL – Advance Simulation Technology d.o.o., Maribor, Slovenia
(2) AVL List GmBH, Graz, Austria

The Mechanism of Quench Oil Oxidation
D. Scott MacKenzie
Houghton International, Valley Forge, PA, USA

Progress on The Development of A Comprehensive Heat Transfer Model for Industrial Liquid Quenching Processes
Jeffrey Franklin, Andrew Banka, and William Newsome
Airflow Sciences Corp., Livonia, MI, USA

Redefining Quenching Technology
Aymeric Goldsteinas and Jake Hamid, Ipsen, Inc., Cherry Valley, IL, USA

Some New Phenomena Discovered During Immersion of Steel Parts Into Liquid Quenchants
Nikolai I. Kobasko, IQ Technologies Inc., Kyiv, Ukraine

Vacuum Technology

In Situ Oxidation of Steels as an Effective and Economical Pretreatment for Uniform and Consistent Vacuum Gas Nitriding Results
Trevor M. Jones, Solar Atmospheres Inc., Souderton, PA, USA
Modeling Gas and Low Pressure Carburizing of Steel
Xiaolan Wang, Mei Yang, Yingying Wei, Lei Zhang, Liang He, and Richard D. Sisson, Jr.
Worcester Polytechnic Institute, Worcester, MA, USA

Modern Heat Treatment of Large Dies in HPGQ Vacuum Furnaces
Maciej Korecki¹, Jozef Olejnik¹, Piotr Kula², Emilia Wolowiec²
(1) SECO/Warwick S.A., Swiebodzin, Poland
(2) Lodz University of Technology, Lodz, Poland

Synchronized Heat Treatment for Totally Integrated Manufacturing-Lines
Volker Heuer and Klaus Loeser
ALD Vacuum Technologies GmbH, Hanau, Germany

Vacuum and Atmosphere Heat Treating Overview
Josh McCaughey, C.I. Hayes, Cranston, RI, USA

Considering Emissivity Factors of a Workload When Projecting Heating Rates in a Vacuum Furnace
Real Fradette and Trevor Jones
Solar Manufacturing, Souderton, PA, USA

Vacuum Tempering at Higher Pressures
Ralph P. Poor, Surface Combustion, Inc., Maumee, OH, USA

Author Index