Contents

Fundamental Principles — I

Distortion Engineering — A New Concept to Control Distortion Problems 1
H.W. Zoch, Th. Luebben, Stiftung Institut, Bremen, Germany

Experimental Characterization of Quenching Boiling Phenomena 12
*A. Banka, J. Franklin, W. Newsome
Airflow Sciences Corporation, Livonia, MI, USA*

Modeling of Processes and Phenomena — I

Predicting Distortion and Residual Stress in a Vacuum Carburized and Gas Quenched Steel Coupon ... 22
*A. Freborg, B. Ferguson and Z. Li
Deformation Control Technology, Cleveland, OH, USA*

Stress and Deformation during Induction Hardening of Tubular Products 34
*B. Lynn Ferguson¹, Z. (Charlie) Li¹, V. Nemkov², R. Goldstein²
¹Deformation Control Technology, Inc., Cleveland, OH, USA
²Fluxtrol, Inc., Auburn Hills, MI, USA*

Residual Stress Prediction for Dual Frequency Induction Hardening Considering Transformation Plasticity during Austenitization ... 45
*M. Schwenk, B. Kaufmann, J. Hoffmeister, V. Schulze
Karlsruhe Institute of Technology, Karlsruhe, Germany*

Fundamental Principles — II

Effect of Quench Start Temperature on Surface Heat Transfer Coefficients 57
*M. Maniruzzaman, X. Dai and R. Sisson, Jr.
Worcester Polytechnic Institute, Worcester, MA, USA*

Numerical Modeling of Heat Treatment — Fluid Flow, Thermal, Metallurgical, Mechanical Couplings ... 69
*S. Denis¹, J.P. Bellot¹, J.F. Douce¹, B. Dussoubs¹, E. Gautier¹, P. Lamesle²
¹CNRS-Université de Lorraine, France
²CROMEP, France*

A New Methodology for Estimating Heat Transfer Boundary Conditions during Quenching of Steel Probes ... 81
*B. Hernandez-Morales, F. Lopez-Sosa, L. Cabrera-Herrera
Universidad Nacional Autónoma de México, Mexico*
Modeling of Processes and Phenomena — II

Kinetics of Isothermal Solidification during Low Temperature-Partial Transient Liquid Phase Bonding of Al/Mg$_2$Si Metal Matrix Composite to AZ91D ... 93
M. Mazar Atabaki1,2, J. Idris1, A. Mullis2,
(1) Universiti Teknologi Malaysia, Malaysia
(2) University of Leeds, UK

Simulation of Quenching Process with Liquid Jets .. 104
P. Stark, B. Hinrichs, N. Hornig, S. Schuettenberg, U. Fritsching
Foundation Institute of Materials Science, Bremen, Germany

Computer Simulation of Quenching and Tempering of Cast Steel .. 117
B. Smoljan, D. Iljkic, University of Rijeka, Croatia

Heat Transfer as Applied to Distortion Control — I

Full Scale Measurements of Cooling Intensity and Homogeneity ... 124
M. Raudensky, J. Horsky, P. Kotrbacek
Brno University of Technology, Czech Republic

Controlled Quenching of Aluminum Specimen in Flexible Spray Fields for the Reduction of Distortion .. 134
N. Hornig1, U. Fritsching1, A. Rose2, S. Schuettenberg2, A. von Hehl2,
(1) University of Bremen, Germany
(2) IWT Stiftung Institut, Germany

Some New Phenomena Discovered during Hardening of Steel Parts in Liquid Quenchants which Affect Distortion ... 144
N. Kobasko1,2, SH.E. Guseynov3,4, M.A. Aronov2
(1) Intensive Technologies Ltd, Ukraine
(2) IQ Technologies Inc., Akron, OH, USA
(3) University of Liepaja, Latvia
(4) Transport and Telecommunication Institute, Riga, Latvia

Relationship between Heat Transfer and Residual Stresses in Three Carburizing Steels ... 159
D. Baker1, J. Speer2, C. Van Tyne2, D. Matlock2
(1) Severstal, Dearborn, MI, USA
(2) Colorado School of Mines, Golden, CO, USA

Process Methodology to Control Distortion — I

Control of Distortion in the Induction Heat Treating Process ... 171
F. Specht, Ajax TOCCO Magnethermic, Warren, OH, USA

Predicting and Managing Heat Treatment Related Residual Stresses within Superalloy Forgings ... 181
R. A. Wallis, X. Du., Wyman-Gordon Forgings, Inc., Houston, TX, USA
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study of Heat Treated Large Hot Rolled Steel Rings</td>
<td>193</td>
</tr>
<tr>
<td>R. Cerda, M. de la Garza, M. Guerrero-Mata, R. Colás, J. Rodríguez, O. Saldivar, J. Cárdenas</td>
<td></td>
</tr>
<tr>
<td>(1) Universidad Autónoma de Nuevo León, Mexico</td>
<td></td>
</tr>
<tr>
<td>(2) Frisa, S.A. de C.V., Mexico</td>
<td></td>
</tr>
<tr>
<td>Modeling Application to Reduce Distortion of a Carburized and Quenched Steel Gear</td>
<td>200</td>
</tr>
<tr>
<td>Z. Li, B. Ferguson, A. Freborg, Deformation Control Technology, Inc., Cleveland, OH, USA</td>
<td></td>
</tr>
</tbody>
</table>

Quenchants — I

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas vs. Liquid Quenching— A Direct Comparison in Hardenability</td>
<td>212</td>
</tr>
<tr>
<td>R. Hill, Solar Atmospheres, Western PA, USA</td>
<td></td>
</tr>
<tr>
<td>Salt Bath Quenching for Minimum Distortion</td>
<td>220</td>
</tr>
<tr>
<td>G. Dubal, Heatbath/Park Metallurgical Corp., Detroit, MI, USA</td>
<td></td>
</tr>
<tr>
<td>New Method of Heat Treatment Using the Wave Technology</td>
<td>231</td>
</tr>
<tr>
<td>A. Sverdlin, M. Panhas, A. Ness, R. Ganiev</td>
<td></td>
</tr>
<tr>
<td>(1) Milwaukee School of Engineering, Milwaukee, WI, USA</td>
<td></td>
</tr>
<tr>
<td>(2) Bradley University, Peoria, IL, USA</td>
<td></td>
</tr>
<tr>
<td>(3) Research Scientific Center of Non-Linear Wave Mechanics and Technology, Russia</td>
<td></td>
</tr>
<tr>
<td>Effect of Contamination on the Cooling Rate of Quench Oils</td>
<td>239</td>
</tr>
<tr>
<td>D. Scott MacKenzie, G. Graham, J. Jankowski</td>
<td></td>
</tr>
<tr>
<td>Houghton International, Inc., Valley Forge, PA, USA</td>
<td></td>
</tr>
</tbody>
</table>

Relationship of Microstructure and Quenching — I

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effect of Thermal Ageing on the Microstructure and Mechanical Properties of Al-Cu-Mg Alloy/Bagasse Ash Particulate Composites</td>
<td>246</td>
</tr>
<tr>
<td>V.S. Aigbodion, S.B. Hassan, Ahmadu Bello University, Zaria, Nigeria</td>
<td></td>
</tr>
<tr>
<td>Investigating the Effects of Quenching and Tempering on Steel Microstructures by Magnetic Barkhausen Noise Method</td>
<td>258</td>
</tr>
<tr>
<td>C. H. Gur, I. Cam, Middle East Technical University, Ankara, Turkey</td>
<td></td>
</tr>
<tr>
<td>Preliminary Evaluation of Fatigue in Carburized, Conventionally and Intensively Quenched Steels</td>
<td>266</td>
</tr>
<tr>
<td>(1) Universidade Federal do Rio Grande do Sul, Brazil</td>
<td></td>
</tr>
<tr>
<td>(2) Akron Steel Treating Company, Akron, OH, USA</td>
<td></td>
</tr>
<tr>
<td>(3) Portland State University, Portland, OR, USA</td>
<td></td>
</tr>
<tr>
<td>Residual Stresses Due to Quenching in Aluminum Forging Parts for Aerospace Applications— Finite Element Analysis and Contour Method Measurement</td>
<td>281</td>
</tr>
<tr>
<td>D. Navalho, A.M. Deus, V. Infante, I. Felde</td>
<td></td>
</tr>
<tr>
<td>(1) Instituto Superior Tecnico, Portugal</td>
<td></td>
</tr>
<tr>
<td>(2) Obuda University, Budapest, Hungary</td>
<td></td>
</tr>
</tbody>
</table>
Quenchants — II

Comparison of the Flow Properties of the Drayton and Tensi Quench Test System

A. Banka¹, D. Scott MacKenzie²

(1) Airflow Sciences Corporation, Livonia, MI, USA
(2) Houghton International, Inc., Valley Forge, PA, USA

Development of Clay Based Nanofluids for Quenching

G. Ramesh, K. Narayan Prabhu
National Institute of Technology Karnataka, Mangalore, India

Effect of Oil Condition on Pinion Gear Distortion

B. Lynn Ferguson¹, D. Scott MacKenzie²

(1) Deformation Control Technology, Inc., Cleveland, OH, USA
(2) Houghton International, Inc., Valley Forge, PA, USA

Heat Transfer as Applied to Distortion Control — II

Uniform Rapid Quenching Enables Austempering

Heat Treatment in HIP

R. Larker¹, P. Rubin²

(1) Indexator Rototilt Systems, Sweden
(2) Rubin Materialteknik, Sweden

Heat Transfer Coefficients during Quenching of Inconel and AISI 304 Stainless Steel Cylinders in NaNO₂ Aqueous Solutions

D.E. Lozano¹, R.D. Mercado-Solís¹, R. Colás¹, L.F. Canalez², G.E. Totten³

(1) Universidad Autónoma de Nuevo León, Mexico
(2) Universidade de Sao Paulo, Brazil
(3) Portland State University, Portland, OR, USA

Quenching of Bearing Races— Influence of Rewetting Behavior on Distortion

Th. Lübben, F. Frerichs, Stiftung Institut für Werkstofftechnik (IWT), Germany

Agitation and Control, CFD

Hydrodynamic Behavior of Liquid

Quenchants in the Vicinity of Quench Probes

B. Hernández-Morales¹, R. Cruces-Reséndez¹, H. Vergara-Hernández², G. Solorio-Díaz³

(1) Universidad Nacional Autónoma de Mexico, Mexico
(2) Instituto Tecnológico de Morelia, Mexico
(3) Universidad Michoacana de San Nicolás, Mexico

Smart Distortion Control by Use of Quench Oil Character

K. Funatani, IMST Institute, Nagoya, Japan

Effect of Quench Probe Material and Section Size on Cooling Severity

G. Ramesh, K. Narayan Prabhu, National Institute of Technology Karnataka, India
Quenching Model Based On Multiphase Fluid ... 394
D. Passarella¹, R. L-Cancelos¹, I. Vieitez¹, E. Martín¹, F. Varas²
(1) Universidade de Vigo, Spain
(2) Universidad Politécnica de Madrid, Spain

Modeling of Processes and Phenomena — III

Thermo-Mechanical Modeling of Heat Treated Aluminum Cast Parts 406
J. Thorborg, J. Klinkhammer, M. Heitzer, S. Andersen
MAGMA, USA and Germany

On the Heat and Mass Transfer Modeling to Simulate
Quenching Heat Treatment Process ... 418
V. Srinivasan¹, D. Greif², B. Basara³,
Advanced Simulation Technologies, USA, Slovenia, Austria

On Direct and Inverse Initial Boundary Value
Problems for Intensive Quenching Processes ... 430
J.S. Rimshans¹, N.I.Kobasko²,³, SH.E.Guseynov¹,⁴, SH.G.Baigirov⁵,
(1) University of Liepaja, Latvia
(2) IQ Technologies Inc., Akron, OH, USA
(3) Intensive Technologies Ltd., Kiev, Ukraine
(4) Transport and Telecommunication Institute, Riga, Latvia
(5) Baku State University, Baku, Azerbaijan

Finite Elemental Analysis and Constitutive Equations — I

Estimation of Heat Transfer Coefficient
Obtained during Immersion Quenching ... 447
I. Felde¹, G.E. Totten²
(1) Obuda University, Budapest, Hungary
(2) G.E. Totten and Associates, Seattle, WA, USA

Experimental and Simulation Studies on Asymmetrical
Quench Distortion of Long Thin Steel Parts ... 457
M. Narazaki¹, M. Kogawara¹, A. Shirayori¹, S.-Y. Kim², S. Kubota²
(1) Utsunomiya University, Japan
(2) Yamanaka Engineering Co. Ltd., Japan

FEM Modeling of the Distortion of Blank/Case Hardened
Gear Blanks due to Chemical Banding ... 465
C. Simsir¹, M. Hunke³, J. Lutjens², R. Rentsch²
(1) Atlım University, Ankara, Turkey
(2) Stiftung Institut für Werkstofftechnik (IWT), Bremen, Germany

Determination of Heat Transfer Coefficient during
Quenching of an Alloy Steel by In-Situ Plant Testing .. 477
T.S. Kumar¹, A. Pareek², N. Arjun³,
(1) Indian Institute of Technology Madras, Chennai, India
(2) National Engineering Industries Limited, Jaipur, India
(3) TherMet Solutions Pvt. Ltd., Bangalore, India
Modeling of Processes and Phenomena — IV

Modeling the Distortion and Residual Stresses Caused by Heat Treating Aluminum Alloy Cast Components ... 490
C. Wu, M. Makhlouf
Worcester Polytechnic Institute, Worcester, MA, USA

Modelling of Temperature Distribution of a Square Bar during Spray Quenching and Square Edge Cooling Effect... 502
G.M. Martínez-Cazares1, D.E. Lozano1, M.P. Guerrero-Mata1, R. Colas1,
L.C.F. Canale2, G.E. Totten3,
(1) Universidad Autónoma de Nuevo León, Monterrey, Mexico
(2) Universidade de Sao Paulo, Brazil
(3) Portland State University, Portland, OR, USA

Residual Stresses in Aluminium Automotive Blocks .. 510
E. Carrera1, A. Rodríguez1, J. Talamantes-Silva1, S. Valtierra1, R. Colas2
(1) Nemak, Gargia, Mexico
(2) Universidade Autónoma, Garza, Mexico

Quenchants — III

Enhancement of Heat Transfer Characteristics of Liquid Quenchants.............................. 519
J. Zupan, T. Filetin, I. Zmak, University of Zagreb, Croatia

Distortion Analysis of Gears Quenched in Different Cooling Gases 528
P. Kula1, R. Atraszkiewicz1, B. Januszewicz1, M. Korecki2, J. Olejnik2, M. Bazel2
(1) Lodz University of Technology, Poland
(2) Seco/Warwick S.A., Poland

Extending the Life of Polymer Quenchants— Cause and Effect of Microbiological Issues ... 538
J. Barberi, C. Faulkner, D. Scott MacKenzie
Houghton International, Inc., Valley Forge, PA USA

Effect of Vegetable Oil Oxidation on Heat Transfer and Residual Stress during Quenching ... 547
D. Schicchi1,6, E. Carvalho de Souza2, A. Gaston3,4, G. Sarmiento3,4, G.E. Totten5, L. Canale2,
(1) Universidad Tecnologica Nacional, Argentina
(2) Universidade de Sao Paulo, Brazil
(3) Universidad Nacional de Rosario, Argentina
(4) Universidad del Salvador, Argentina
(5) Portland State University, Portland, OR, USA
(6) Instituto Nacional de Tecnologia Industrial, Argentina

Finite Element Analysis and Constitutive Equations — II

Numerical and Experimental Analysis of Residual Stresses and Distortion in Different Quenching Processes of Aluminum Alloy Profiles ... 563
M. Reich, O. Kessler, University of Rostock, Germany
Simulation of Quenched Japanese Short Swords
Made of Several Kinds of Materials

T. Inoue, Fukuyama University, Japan

Progress on the Development of a Comprehensive Quenching Model

J. Franklin, A. Banka, Airflow Sciences Corporation, Livonia, MI, USA

Quenchants — IV

Vegetable Oil vs Mineral Oil in Quenching Applications

J.P. Andriollo¹, S. Bianchi¹, A. Parodi², L. Baglietto²
(1) Quenching System Associates SA, Geneva, Switzerland
(2) A&A F.lli Parodi S.p.A, Campomorone, Italy

Effect of Soybean Oil and Palm Oil Oxidation Stability on the Variation of Heat Transfer Coefficients and Residual Stress

D. Schicchi¹, G. Belinato², G. Sarmiento³, A. Gastón³, G. E. Totten⁵, L.C.F. Canale²
(1) Universidad Tecnológica Nacional, Argentina
(2) Universidade de São Paulo, Brazil
(3) Universidad Nacional de Rosario, Argentina
(4) Universidad del Salvador, Argentina
(5) Portland State University, Portland, OR, USA
(6) Instituto Nacional de Tecnología Industrial, Argentina

Process Methodology to Control Distortion — II

Methodical Investigation of Distortion Biasing Parameters during Case Hardening of Spur Wheels

M. Steinbacher, H. Surm, B. Clausen, T. Lubben, F. Hoffmann,
Foundation Institute of Materials Science, Bremen, Germany

Stable Measurement of Temperature Errors during Testing of Quenchants by Methods of the Theory of Ill-Posed Problems

SH.E. Guseynov¹,², N.I. Kobasko³, S.A. Andreyev², J.S. Rimshans¹,
J.Kaupuzs¹, P.Morev¹, N.Zaiceva¹
(1) University of Liepaja, Latvia
(2) Transport and Telecommunication Institute, Latvia
(3) IQ Technologies Inc., Akron, OH, USA
(4) Intensive Technologies Ltd., Kiev, Ukraine

Identification of Manufacturing Process Causes in the Distortion of Gearbox Shafts

R. Husson¹, T. Scheer¹, M. Frabolot¹, C. Baudouin², R. Bigot²
(1) Renault, France
(2) LCFC (EA 4495), France
Control and Elimination of Distortion — I

Research on Controlling the Distortion of Head Hardening Rail ... 678
X. Zhan, S. Wang
Metals and Chemistry Research Institute of China
Academy of Railway Sciences, Beijing, China

Minimizing Distortion Through "One Piece Flow, Heat Treatment"
... 686
V. Heuer¹, K. Loeser¹, Th. Leist¹, D. Bolton²
(1) ALD Vacuum Technologies, Germany
(2) ALD Thermal Treatment Inc., Port Huron, MI, USA

Compensation of SAE52100 Bearing Ring Distortion
During Gas Nozzle Field Quenching .. 699
J. Lütjens, H. Surm, M. Hunkel
Institut für Werkstofftechnik, Bremen, Germany

What Every Engineer Should Know about Graphite (CFRC) Fixturing .. 711
J. Labant¹, K Schmidt²
(1) St. Marys, PA, USA
(2) Strongsville, OH, USA

Controlling Residual Stress while Achieving Dimensional Stability in Aluminum Alloys— A Historical Perspective .. 717
T. Croucher, Tom Croucher and Associates, Corona, CA, USA

Modeling of Processes and Phenomena — V

Simulation of Segregation-Induced Distortion during the Heat Treatment of a Case-Hardening Steel SAE 5120 ... 734
M. Hunkel, Stiftung Institut für Werkstofftechnik, Germany

Surface Temperature and Heat Transfer Coefficient Determination during Quenching for Martensite Fraction
Prediction Using a Parabolic Heat Transfer Model .. 746
D.E. Lozano¹, R.D. Mercado-Solis¹, R. Colas¹, L.F. Canale², G.E. Totten³
(1) Universidad Autónoma de Nuevo León, Mexico
(2) Universidade de Sao Paulo, Brazil
(3) Portland State University, Portland, OR, USA

Case Hardening Simulation of Surface Compacted, Graded Porous Astaloy 85 Mo Components ... 755
P. Nusskern, J. Hoffmeister, V. Schulze
Karlsruhe Institute for Technology (KIT), Germany

Multiphase Model on Interfacial Heat Transfer for Water Quenching of Cylindrical Sample .. 767
G. Wang¹, Y. Rong¹,²
(1) Tsinghua University, Beijing, China
(2) Worcester Polytechnic Institute, Worcester, MA, USA
Control and Elimination of Distortion — II

Analysis of the Distortion Potential within Bearing Rings ... 773
F. Frerichs; Th. Lübben,
Stiftung Institut für Werkstofftechnik (IWT), Bremen, Germany

Extending the Use of Nitriding Processes to Reduce Distortion and Fuel Consumption ... 785
E. Troell1, S. Haglund2, N. Hawsho3
(1) Swerea IVF AB, Sweden
(2) Swerea KIMAB, Sweden
(3) Scania AB, Sweden

Probe Design to Characterize Heat Transfer during Quenching Process ... 792
B. L. Ferguson, A. Freborg, Z. Li
Deformation Control Technology, Inc., Cleveland, OH, USA

A Systems Approach for Achieving Stress Free Parts in High Strength Aluminum Alloys ... 802
T. Croucher, Tom Croucher and Associates, Corona, CA, USA

Material and Shape Optimization — I

Modelling of Thermal History and Microstructural Evolution on the Run-out Table of a Hot Strip Mill ... 817
J. Pyykkönen1, M. Somani1, D. Porter1, M. Holappa2, T. Tarkka2
(1) University of Oulu, Finland
(2) Ruukki Metals, Finland

Distortion Analysis of Air Hardened Deep Drawn Parts of the Air-Hardened Steel LH800 ... 829
O. Grydin1, F. Nürnberger1, M. Schaper1, T. Cwiekalä2, A. Brosius2, A.E. Tekkaya2
C. Barthel3, B. Svendsen3
(1) Leibniz University of Hanover, Hanover, Germany
(2) TU Dortmund University, Dortmund, Germany
(3) RWTH Aachen University, Aachen, Germany

Simulation of Annealing Process for Cold-Rolled Strip Steel ... 839
I. Felde1, A. Mucsi1, M. Reger1, J. Foldi2, O. Szabados2
(1) Obuda University, Budapest, Hungary
(2) ISD Dunaferr, LLC., Dunaujvaros, Hungary

Relationship of Microstructure and Quenching — II

Microstructures Characterization of Quenched Rebars Using Electron Back-Scatter Diffraction Technique ... 848
M. Al-Mojil, S. Al-Shahrani, T. Mehmod, W. Al-Shalfan
Saudi Basic Industries Corporation (SABIC), Saudi Arabia
Influence of Straightening on Bending Fatigue Properties of Induction Hardened Shafts in Steel 42crmo4 (SAE 4140) .. 858
H. Kristoffersen, S. Haglund, Swerea, Sweden

The Role of Heat Treatment on Microstructure and Corrosion Resistance of As-Cast Ni-Al Bronze Alloys ... 867
M. Daroonparvar¹, M. Azizi Mat Yajid²
(1) Islamic Azad University
(2) Universiti Teknologi

Distortion in Tube and Pipe Products—Microstructural and Computational Evidence ... 876
L. Frame, Thermatool Corp., East Haven, CT, USA

Materials and Shape Optimization II — Residual Stress

Hardenability of High Strength 7055 Aluminum Alloy Thick Plate 889
S.D. Liu, C.B. Li, Y.L. Deng, X.M.Zhang,
Central South University, Key Laboratory of Nonferrous Materials Science and Engineering of Ministry of Education, China

Residual Stress Development in Heat Treated Steel Bars Due to Straightening Processes .. 897
A. Ellermann, B. Scholtes,
University of Kassel, Germany

Liquid Quenchant Database

Liquid Quenchant Database .. 909
I. Felde¹, B. Liscić², R. Wood³
(1) Obuda University, Budapest, Hungary
(2) University of Zagreb, Croatia
(3) International Federation for Heat Treatment and Surface Engineering, UK

Author Index .. 913