Depending on pressure and temperature, many metals can exist in more than one crystalline form, a phenomenon known as allotropy. For example, iron undergoes a series of allotropic transformations during heating and cooling as shown in the diagram. Note that an allotropic transformation is a solid state phase transformation, and as such, occurs at a constant temperature during either heating or cooling.

Under equilibrium cooling conditions, pure iron solidifies from the molten state at 1540°C (2800°F) and forms what is called delta iron (δFe), which has a body-centered cubic (BCC) structure.

Delta iron is then stable on further cooling until it reaches 1395°C (2541°F), where it undergoes a transformation to a face-centered cubic (FCC) structure called gamma iron (γFe). On still further cooling to 900°C (1648°F), it undergoes yet another phase transformation, transforming from the FCC structure back to the BCC structure. This BCC structure is called alpha iron (αFe) to distinguish it from the higher-temperature delta iron.

This last transformation, γFe \rightarrow αFe, is extremely important, as it forms the basis for the hardening of steel. Note that the γFe \rightarrow αFe transformation occurs at 900°C (1648°F) on cooling, somewhat lower than the 910°C (1673°F) transformation temperature on heating.

This temperature differential is known as the temperature hysteresis of allotropic phase transformation, and its magnitude increases with faster cooling rates. The temperatures (designated A) associated with heating contain the subscript c, which is French for chauffage, meaning heating. Cooling temperatures have the subscript r for the French refroidissement, meaning re-cooling.

Many other metals, as well as some nonmetals, also exhibit allotropic transformations. For example, titanium, zirconium, and hafnium all exhibit a transition from a hexagonal close-packed (HCP) structure to BCC on heating. Note that in each case, a close-packed structure is stable at room temperature while a looser packing is stable at elevated temperatures. Although this is not always the case, it is typical of many metals.

This information is from Elements of Metallurgy and Engineering Alloys, a new book by F.C. Campbell. Visit www.asminternational.org and click on “Materials Information” to read a sample chapter and view the table of contents.