Semiconductor integration and failure-detection methods have made huge progress in the last 40 years. Every conference deals with new methods to localize failures in nanostructures, tricky case studies, and adventurous preparation techniques for devices and packages that, 10 years ago, would have subjected one to psychological examination due to an overflow of phantasy. Respect is due to everyone who contributed to this success story!

However, upon reflection, aren’t we in a labyrinth with a dead end? Is it really of interest to localize a hidden open within a submicron device by using a $1 million setup that combines, for example, magnetic microscopy and time-domain reflectometry? Hmm... yes and no. Those of us who deal with semiconductor process control or process failure analysis certainly will benefit. But what about those who deal with root-cause findings? Frankly, when considering the customer’s expectations, I have some doubts.

Moore’s law didn’t pass by without affecting other electronic components, such as capacitors, hybrid relays, and so on. Electronics became much, much more complex and powerful. Comparing the electronics of a car from the 1980s with one from today and, concurrently, comparing the related failure statistics tells us that we must not neglect the system aspect. Hand on heart: How often did you conclude an analysis with “electrostatic discharge/electrical overstress” recently? In most cases, it’s just an academic circumscripti9on that the device suffered severe destruction, but nothing conclusive was found as the root cause. If 8D reports frequently abound with “Not Applicable” in many columns, something must be wrong with this procedure. Are we asking the wrong questions? Is it really of importance that the MOSFET located in the output driver at position $X - 342X = 677$ suffers from a pinhole gate leakage, or would it be enough to know that output $X4$ is leaky?

Again, two worlds of thinking meet at this point. The process controller may need the pinhole information. But what about the service manager of the failed industrial control electronics? He will ask other questions: “Why did this component fail?” If it happened several times with the same component from different lots, he will question whether the problem is PCB circuitry or system related. Is it an inductance that responds with transient spikes to a signal change? A long wiring on the PCB or by cable that catches electromagnetic interference? A capacitor that falsifies signal pulses? Environmental conditions that borderline the specifications? Periodical, short-time electrical overstress? Hot plugging? Many more questions arise when reflecting on the electrical and environmental ambience of the application. By the way, this process is called anamnesis, meaning “prior to analysis.”

In the end, only two questions are of interest to our clients: “What can be done to avoid the failure in the future?” and “How can potentially affected devices/PCBs or systems be sorted out (by useful testing)?” The ability to answer even one of these two key questions requires a sound understanding of the root cause. If, however, the root cause is not device related, then using only device analysis will not meet the expectations of the client.

Failure analysis is more than just semiconductor analysis. It also includes passive components, PCBs, wiring, and so on. We need to understand not only components but also systems and applications. And, we need the courage to confront our customers in the supply chain with this certainty. “Solving the problem together” must become the paradigm of the future, instead of fearing the loss of our customer’s confidence when we ask awkward questions.

The ISTFA 2014 Panel Discussion will focus on the topic “System-to-Component-Level FA in the Space and Oil Industries.” Let’s extend our horizon beyond the scope of semiconductor devices. Feel encouraged to share your passive components and system-level failure analyses with our community. Let’s learn and think together, keeping the system in mind!

I look forward to seeing you at ISTFA.

Peter Jacob
Empa Swiss Federal Laboratories for Testing and Research
Reliability and Technology Department
peter.jacob@empa.ch

Letters to the Editor: EDFA encourages your participation. Send your comments and suggestions to Felix Beaudoin, EDFA Editor, at felix.beaudoin@globalfoundries.com.
WHEN FA = FAST ANSWERS

Look to JEOL for reliable imaging and analytical tools designed for both routine and exacting failure analysis.

JEOL SEMs, TEMs, and sample preparation instruments are versatile, easy to use, and an uncompromising choice when it comes to valuing your time, yield, and bottom line. JEOL USA is #1 in service, technical and applications support.

Backscatter electron image of cross section of wire bond.

EBSD (Electron Backscatter Diffraction Analysis) image of wire bond cross section.

EBIC (Electron Beam Induced Current) image of electronic device.

S/TEM EDS map of integrated circuit cross section.

JEOL

Solutions for Innovation

For more information visit www.jeolusa.com/jeolFA

www.jeolusa.com
salesinfo@jeol.com
978-535-5900
ASAP-1® IPS
Digital Preparation System

- Enhanced processing for backside analysis, decapsulation, precision machining and parallel polishing

- Real-Time Video Monitor with system parameters – ‘ALWAYS LIVE’

- Large 100mm x 100mm preparation area

- Patented ULTRACOLLIMATOR Mode for sub-micron alignment of topside dice, etc.

- Touch-screen control with physical joystick & controls. – Best of both worlds!

- X, Y and Z axes all have industry-leading deep sub-micron accuracy

- Vacuum removal of particles available as an option

- Patented Floating Head provides a true polishing action – Enhanced with Force Feedback

Unique IPS Modules
(Patent Pending)

End-Point Detection

Enhanced Decapsulation
Removes Guesswork

3D Thermal Relaxation

Live Resistive Scan of Part: Shown on IPS Touchscreen

Results of Thermal Relaxation. Moiré Fringes, resulting from thinning and polishing similar packages at increasing temperature

Note: Fewer Fringes = Higher Planarity

3D Curvature Correction

Auto-Curve, Auto-Tilt Independent X & Y Curves

Thinned and Polished Parts In Less Than 1 Hour

Toll Free (US) 1-877-542-0609
Tel: 1-714-542-0608 Fax: 1-714-542-0627
e-mail: info@ultratecusa.com
www.ultratecusa.com

Flatter... and More Planar!
ENHANCED PREPARATION:

- Fast, accurate, optical tilt alignment – Aligns ‘To The Die’
- Precise sample control – Load, Rotation, Sweep
- Remove precise amounts of material
- Specialist ‘quick release’ holders – SEM / FIB / X-Section / Parallel Polish
- 2nd generation units, with up to 4X ULTRACOLLIMATOR alignment sensitivity

RAPIDETCH
Chemical Decapsulator

ENHANCED DECAPSULATION:

- Panel control of all process parameters
- Best In Class – Heating & Cooling times
- Low Oxidation Conditions – inert nitrogen – low temperature – etch head enhancements
- Low Maintenance – all parts can be replaced in the field
- Low cost of ownership

Toll Free (US) 1-877-542-0609
Tel: 1-714-542-0608 Fax: 1-714-542-0627
e-mail: info@ultratecus.com
www.ultratecus.com
NEW OmniGIS II

Revolutionary single-nozzle multiple-gas injection system

OmniGIS II excels at applications from sample preparation and nanoscale writing to lithography at the frontiers of nanoscience.

- XYZ nozzle control for optimum positioning over the site
- Unique “Flow-through” carrier for maximum process speed
- Automatic feedback control for accurate gas delivery
- Vent-free auto-ID cartridges for fast and easy source changes

For more information visit www.oxford-instruments.com/OmniGIS