ASM Handbook®

Heat Treating Volumes

Prepared under the direction of the ASM International Handbook Committee

Review the detailed table of contents to each of the four volumes by selecting the title.

Volume 4A
Steel Heat Treating Fundamentals and Processes

Volume Editors

Jon. L Dossett, FASM, Consultant
George E. Totten, FASM, Portland State University

Volume 4B
Steel Heat Treating Technologies

Volume Editors

Jon. L Dossett, FASM, Consultant
George E. Totten, FASM, Portland State University

Volume 4C
Induction Heating and Heat Treatment

Volume Editors

Valery Rudnev, FASM, Inductoheat Inc.
George E. Totten, FASM, Portland State University

Volume 4D
Heat Treating of Irons and Steels

Volume Editors

Jon. L Dossett, FASM, Consultant
George E. Totten, FASM, Portland State University

ASM International
Materials Park, OH 44073-0002
asminternational.org
Contents

Steel Heat Treating Fundamentals and Processes

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction to Steel Heat Treating</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Introduction to Steel Heat Treatment</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Constitution of Iron</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Phases of Heat Treating Steel</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>Transformation Diagrams</td>
<td>16</td>
</tr>
<tr>
<td>7</td>
<td>Isothermal Transformation Diagrams</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>Continuous Cooling Transformation Diagrams</td>
<td>20</td>
</tr>
<tr>
<td>9</td>
<td>Hardness and Hardenability of Steels</td>
<td>26</td>
</tr>
<tr>
<td>10</td>
<td>Hardness and Hardenability of Steels</td>
<td>26</td>
</tr>
<tr>
<td>11</td>
<td>Jominy End-Quench Testing</td>
<td>27</td>
</tr>
<tr>
<td>12</td>
<td>Quench Severity in Hardenability Evaluation</td>
<td>30</td>
</tr>
<tr>
<td>13</td>
<td>Ideal Critical Diameter</td>
<td>33</td>
</tr>
<tr>
<td>14</td>
<td>Hardenability Correlation Curves</td>
<td>33</td>
</tr>
<tr>
<td>15</td>
<td>Other Hardenability Tests</td>
<td>35</td>
</tr>
<tr>
<td>16</td>
<td>Jominy Equivalence Charts</td>
<td>40</td>
</tr>
<tr>
<td>17</td>
<td>Determining Hardenability Requirements</td>
<td>41</td>
</tr>
<tr>
<td>18</td>
<td>Factors Affecting Hardenability</td>
<td>45</td>
</tr>
<tr>
<td>19</td>
<td>Variability in Jominy Data Sets</td>
<td>46</td>
</tr>
<tr>
<td>20</td>
<td>Calculation of Steel Hardenability</td>
<td>47</td>
</tr>
<tr>
<td>21</td>
<td>Steel Selection for Hardenability</td>
<td>48</td>
</tr>
<tr>
<td>22</td>
<td>Hardenability Limits and H-Steels</td>
<td>50</td>
</tr>
<tr>
<td>23</td>
<td>H-Steels Classified by Hardness at End-Quench Positions</td>
<td>51</td>
</tr>
<tr>
<td>24</td>
<td>Hardenability Calculation of Carbon and Low-Alloy Steels</td>
<td>60</td>
</tr>
<tr>
<td>25</td>
<td>Hardness of Steel with Low or Medium Carbon</td>
<td>60</td>
</tr>
<tr>
<td>26</td>
<td>Principles of Computational Hardenability</td>
<td>60</td>
</tr>
<tr>
<td>27</td>
<td>Modeling Approaches to Hardenability of Steels</td>
<td>62</td>
</tr>
<tr>
<td>28</td>
<td>Caterpillar Hardenability Calculator (IE0024)</td>
<td>64</td>
</tr>
<tr>
<td>29</td>
<td>Estimation of Jominy Curves from Compositions</td>
<td>69</td>
</tr>
<tr>
<td>30</td>
<td>Calculation Example for 8645 Steel</td>
<td>70</td>
</tr>
<tr>
<td>31</td>
<td>Calculation Example for Boron Steel (86B45)</td>
<td>71</td>
</tr>
<tr>
<td>32</td>
<td>Regression Analysis of Hardenability in Europe</td>
<td>71</td>
</tr>
<tr>
<td>33</td>
<td>Calculation of Hardenability in High-Carbon Steels</td>
<td>80</td>
</tr>
<tr>
<td>34</td>
<td>Background</td>
<td>80</td>
</tr>
<tr>
<td>35</td>
<td>Derivation of Multiplying Factors</td>
<td>83</td>
</tr>
<tr>
<td>36</td>
<td>Multiplying Factors</td>
<td>83</td>
</tr>
<tr>
<td>37</td>
<td>Use of the Multiplying Factors</td>
<td>86</td>
</tr>
<tr>
<td>38</td>
<td>Limitations of the Multiplying Factors</td>
<td>87</td>
</tr>
</tbody>
</table>

Steel Quenching Fundamentals and Processes

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Quenching of Steel</td>
<td>89</td>
</tr>
<tr>
<td>2</td>
<td>G. E. Totten, J. L. Dossett, and N. I. Kobasko</td>
<td>91</td>
</tr>
<tr>
<td>3</td>
<td>Mechanism of Quenching</td>
<td>91</td>
</tr>
<tr>
<td>4</td>
<td>Quenching Process Variables</td>
<td>94</td>
</tr>
<tr>
<td>5</td>
<td>Metallurgical Aspects</td>
<td>95</td>
</tr>
<tr>
<td>6</td>
<td>Tests and Evaluation of Quenching Media</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>Cooling Curve Test</td>
<td>103</td>
</tr>
<tr>
<td>8</td>
<td>Heat-Transfer Coefficient Calculations</td>
<td>110</td>
</tr>
<tr>
<td>9</td>
<td>Common Quenching Process Variables</td>
<td>113</td>
</tr>
<tr>
<td>10</td>
<td>Quenching Systems</td>
<td>118</td>
</tr>
<tr>
<td>11</td>
<td>Water- and Air-Quenching Media</td>
<td>122</td>
</tr>
<tr>
<td>12</td>
<td>Aqueous Salt (Brine) Solutions</td>
<td>122</td>
</tr>
<tr>
<td>13</td>
<td>Molten Metal Quenchants</td>
<td>125</td>
</tr>
<tr>
<td>14</td>
<td>Molten Salt and Hot Oil Quenchants</td>
<td>126</td>
</tr>
<tr>
<td>15</td>
<td>Oil Quenchants</td>
<td>129</td>
</tr>
<tr>
<td>16</td>
<td>Quench Oil Bath Maintenance</td>
<td>139</td>
</tr>
<tr>
<td>17</td>
<td>Oil Quench System Monitoring</td>
<td>144</td>
</tr>
<tr>
<td>18</td>
<td>Safe Use of Petroleum Quench Oils</td>
<td>144</td>
</tr>
<tr>
<td>19</td>
<td>Polymer Quenchants</td>
<td>146</td>
</tr>
<tr>
<td>20</td>
<td>Fixtures</td>
<td>151</td>
</tr>
</tbody>
</table>

Characterization of Heat Transfer during Quenching

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B. Herrández-Morales</td>
<td>158</td>
</tr>
<tr>
<td>2</td>
<td>Heat-Transfer Basics</td>
<td>159</td>
</tr>
<tr>
<td>3</td>
<td>Heat Generated by Microstructural Evolution</td>
<td>162</td>
</tr>
<tr>
<td>4</td>
<td>Liquid Quenching Heat Transfer</td>
<td>162</td>
</tr>
<tr>
<td>5</td>
<td>Active Heat-Transfer Boundary Condition</td>
<td>167</td>
</tr>
</tbody>
</table>

Laboratory Tests to Evaluate the Cooling Intensity of Liquid Quenchants

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Laboratory Tests to Evaluate the Cooling Intensity of Liquid Quenchants</td>
<td>176</td>
</tr>
<tr>
<td>2</td>
<td>Differences between Laboratory Tests and Characterization of Industrial Quenching Processes</td>
<td>179</td>
</tr>
<tr>
<td>3</td>
<td>Critical Heat-Flux Densities of Liquid Quenchants</td>
<td>179</td>
</tr>
<tr>
<td>4</td>
<td>Temperature Gradient Method for Evaluation of Cooling Intensity in Workshop Conditions</td>
<td>180</td>
</tr>
<tr>
<td>5</td>
<td>The Liščić/Petrofero Probe</td>
<td>181</td>
</tr>
<tr>
<td>6</td>
<td>Prediction of Hardness Distribution after Quenching Axially</td>
<td>183</td>
</tr>
</tbody>
</table>

Symmetrical Workpieces of Any Shape

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Numerical Solution of the Inverse Heat-Conduction Problem</td>
<td>184</td>
</tr>
<tr>
<td>2</td>
<td>Smoothing of Measured Temperatures</td>
<td>188</td>
</tr>
<tr>
<td>3</td>
<td>Simulation Examples</td>
<td>189</td>
</tr>
</tbody>
</table>

Quench Process Sensors

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G. E. Totten</td>
<td>192</td>
</tr>
<tr>
<td>2</td>
<td>Fluid Flow in Quenching</td>
<td>192</td>
</tr>
<tr>
<td>3</td>
<td>Fluid Flow Measurement</td>
<td>192</td>
</tr>
</tbody>
</table>

Intensive Quenching of Steel Parts

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M. A. Aronov, N. I. Kobasko, Joseph A. Powell, and George E. Totten</td>
<td>198</td>
</tr>
<tr>
<td>2</td>
<td>Mechanical Properties and Cooling Rate of Quenching</td>
<td>198</td>
</tr>
<tr>
<td>3</td>
<td>Intensive Quenching and Other Quench Methods</td>
<td>199</td>
</tr>
<tr>
<td>4</td>
<td>Heat Transfer during Quenching</td>
<td>200</td>
</tr>
<tr>
<td>5</td>
<td>Batch Intensive Quenching (IQ-2)</td>
<td>201</td>
</tr>
<tr>
<td>6</td>
<td>Single-Part IQ Process (IQ-3)</td>
<td>203</td>
</tr>
<tr>
<td>7</td>
<td>Improvement of Steel Microstructure, Mechanical Properties, and Stress Conditions</td>
<td>204</td>
</tr>
<tr>
<td>8</td>
<td>IQ Process and Part Distortion</td>
<td>207</td>
</tr>
<tr>
<td>9</td>
<td>Design of Production IQ Systems</td>
<td>207</td>
</tr>
<tr>
<td>10</td>
<td>Practical Applications of IQ Processes</td>
<td>210</td>
</tr>
</tbody>
</table>

Inverse Hardening

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B. Liščić and George E. Totten</td>
<td>213</td>
</tr>
<tr>
<td>2</td>
<td>Heat-Extraction Dynamics</td>
<td>213</td>
</tr>
<tr>
<td>3</td>
<td>Metallurgical Aspects</td>
<td>215</td>
</tr>
<tr>
<td>4</td>
<td>Quenchants Enabling Controllable Delayed Quenching</td>
<td>218</td>
</tr>
<tr>
<td>5</td>
<td>Properties</td>
<td>218</td>
</tr>
<tr>
<td>6</td>
<td>Summary</td>
<td>219</td>
</tr>
</tbody>
</table>

Gas Quenching

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Volker Heuer</td>
<td>221</td>
</tr>
<tr>
<td>2</td>
<td>Introduction</td>
<td>221</td>
</tr>
</tbody>
</table>
Case Hardening of Steels .. 387

Introduction to Surface Hardening of Steels
Michael J. Schneider and Madhu S. Chatterjee 389
Diffusion Methods of Surface Hardening 389
Carburizing and Carbonitriding 390
Nitriding and Nitrocarburizing 393
Applied Energy Methods ... 395
Other Methods .. 396
Process Selection .. 397

Stop-Off Technologies for Heat Treatment
Eckhard H. Burgdorf, Manfred Behinke, Rainer Braun,
and Kevin M. Duffy ... 399
Mechanical Masking ... 399
Copper Plating .. 399
Stop-off Paints ... 400

Methods of Measuring Case Depth in Steels
William J. Bernard III .. 405
Introduction ... 405
MeasurementSpecifications 405
Chemical Method .. 406
Mechanical Methods .. 407
Visual Methods .. 411
Nondestructive Methods 413

Applied-Energy Case Hardening of Steels 417

Flame Hardening of Steels
B. Rivolta .. 419
Methods of Flame Hardening 419
Fuel Gases .. 421
Burners and Related Equipment 423
Operating Procedures and Control 426
Preheating .. 427
Depth and Pattern of Hardness 427
Maintenance of Equipment 428
Preventive Maintenance ... 431
Safety Precautions ... 431
Quenching Methods and Equipment 431
Quenching Media .. 432
Flame-Hardening Problems and Their Causes 432
Tempering of Flame-Hardened Parts 433
Surface Conditions ... 433
Dimensional Control .. 433
Selection of Process ... 433
Selection of Material .. 435
Flame Annealing ... 436

Induction Surface Hardening of Steels
Valery Rudnev and Jon Dossett 438
Principles of Induction Heating 438
High-Temperature Electrical, Magnetic, and
Thermal Properties ... 440
Eddy-Current Distribution 443
Induction Hardening and Tempering 446
General Equipment and Process Factors 451
Surface-Hardening Parameters 456

Application Tips and Troubleshooting 459

Electron Beam Surface Hardening
Rolf Zenker and Anja Buchwalder 462
Electron Beam Generation and Interaction with Material ... 462
Processing Techniques .. 464
Electron Beam Hardening Technologies 466
Electron Beam Facilities and Manufacturing Systems
with Integrated EB Facilities 469
Applications ... 471

Laser Surface Hardening
Soundarapandian Santhanakrishnan and Narendra B. Dahotre .. 476
Conventional Surface-Hardening Techniques 476
Laser Surface Hardening ... 478
Absorptivity ... 479
Laser Scanning Technology 480
Laser Annealing .. 481
Laser Cladding ... 481
Laser Shock Peening ... 483
Laser Heat Treatment ... 483
Thermokinetic Phase Transformations 485
Challenges in Obtaining the Specified Hardness 487
Influence of Cooling Rate 488
Effect of Processing Parameters on Temperature,
Microstructure, and Case Depth Hardness 488
Laser Surface Hardening of Nonferrous Alloys 491

Carburizing and Carbonitriding of Steels 503

Introduction to Carburizing and Carbonitriding
Allen J. Fuller, Jr ... 505
Introduction ... 505
History ... 505
General Process Description 506
How to Carburize .. 509
Basic Carburizing Reactions 510
Advantages and Limitations 512
Carburizing Steels ... 514
Quality Assurance ... 514
Possible Complications ... 516

Evaluation of Carbon Control in Carburized Parts
Gary D. Keil and Olga K. Rowan 522
Hardness Testing .. 522
Microscopic Examination 522
Analysis of Consecutive Cuts 523
Analysis of Shim Stock ... 524
Analysis of Rolled Wire .. 526
Spectrographic Analysis ... 526
Electromagnetic Testing ... 527

Gas Carburizing
Olga K. Rowan and Gary D. Keil 528
Thermodynamics and Kinetics 528
Carbon Sources and Atmosphere Types 532
Carbon-Transfer Mechanism 535
Carburizing Modeling and Case Depth Prediction 536
Carburizing Equipment ... 538
Furnace Temperature and Atmosphere Control 540
Carburizing Cycle Development 544
Process Planning .. 547
Dimensional Control .. 555
Case Depth Evaluation ... 556

Pack Carburizing .. 560

Introduction ... 560
Advantages and Disadvantages 560
Carburizing Medium and Compounds 561
Process Control .. 562
Furnaces for Pack Carburizing 562
Carburizing Containers .. 563
Packing ... 564
Liquid Carburizing and Cyaniding of Steels
Jon Dossett .. 565
Cyanide-Containing Liquid Carburizing Baths 565
Cyaniding (Liquid Carbonitriding) 566
Noncyanide Liquid Carburizing 567
Carbon Refrigeration .. 567
Hardness Gradients ... 571
Process Control ... 571
Control of Case Depth .. 572
Dimensional Changes ... 574
Quenching Media .. 574
Salt Removal (Washing) .. 575
Typical Applications .. 576
Precautions in the Use of Cyanide Salts 577
Disposal of Cyanide Wastes 578
Low-Pressure Carburizing
Volkert Heuer .. 581
Process .. 581
Physical Principles ... 582
Equipment for Low-Pressure Carburizing 583
Carburizing Strategies ... 584
Prediction of Carbon Profiles 585
Applications ... 586
Quality Control of the LPC Process in Mass Production 587
High-Temperature LPC .. 587
Plasma Carburizing
Brigitte Clausen and Winfried Graffen 591
Principles of Plasma Carburizing 591
Carburizing Reaction in Plasma Carburizing 593
Advantages and Disadvantages 594
Production Equipment ... 595
Application Example ... 596
Cyaniding of Steels
Jon Dossett .. 599
Process Description .. 600
Case Composition .. 601
Depth of Case .. 603
Case-Depth Uniformity .. 603
Hardenability of Case ... 604
Hardness Gradients ... 605
Void Formation .. 605
Control of Retained Austenite 605
Furnace Atmospheres .. 606
Temperature Selection ... 609
Quenching Media and Practices 610
Tempering ... 611
Hardness Testing ... 612
Applications ... 613
Cyaniding of Powder Metallurgy Parts 614
Ammonia Guidelines .. 614
Nitriding and Nitrocarburizing of Steels 617
Fundamentals of Nitriding and Nitrocarburizing
E.J. Mittenmeyer ... 619
Introduction .. 619
1. Advent of Nitriding .. 619
3. The Iron-Nitrogen Phase Diagram 621
4. Nitriding Potential and the Lehrer Diagram 622
5. Controlled Nitriding .. 623
6. Carburizing Potential and Controlled Carburizing 624
7. Controlled Nitrocarburizing 625
8. Local Equilibria and Stationary States 626
9. Microstructural Development of the Compound Layer ... 628
11. Microstructural Development of the Diffusion Zone ... 635
12. Kinetics of Diffusion-Zone Growth 639
Epilogue ... 641
Gas Nitriding and Gas Nitrocarburizing of Steels
K.-M. Winter and J. Kalucki 647
Introduction ... 647
Terminology for Gas Reactions 648
Low-Temperature Nitriding and Nitrocarburizing 649
Nitriding ... 651
Ferritic and Austenitic Nitrocarburizing 656
Other High-Temperature Processes 657
Nitriding Processing ... 659
Atmosphere Control .. 661
Measuring the Potentials 665
Temperature Control ... 668
Impact of Measuring Errors 669
Simulation of Nitriding Processes 669
Inspection and Quality Control 670
Lab Equipment and Sample Preparation 670
Selective Nitriding ... 673
Common Problems ... 673
Rules of Thumb .. 674
Safety Precautions ... 674
Equipment ... 675
Liquid Nitriding of Steels
George Pantazopoulos .. 680
Liquid Nitriding Applications 680
Liquid Nitriding Systems 680
Liquid Pressure Nitriding 681
Aerated Bath Nitriding .. 681
Case Depth and Case Hardness 683
Operating Procedures ... 683
Equipment ... 684
Maintenance Schedules .. 684
Safety Precautions ... 685
Liquid Nitrocarburizing .. 685
Nontoxic Salt Bath Nitrocarburizing Treatments 686
Wear and Antiscuffing Characteristics of the Compound Zone Produced in Salt Baths 687
Appendix 1—Liquid Bath Nitriding Noncyanide 688
Baths .. 688
Appendix 2—Liquid Bath Nitriding 689
Plasma (Ion) Nitriding and Nitrocarburizing of Steels
Jan Elwart and Ralph Hunger 690
Introduction ... 690
Process History and Developments 690
Glow-Discharge Process 693
Plasma Nitriding Furnaces 695
Process Control .. 696
Case Structures and Formation 698
Workpiece Factors ... 699
Ion Nitriding Applications 700
Plasma Nitrocarburizing .. 701
Diffusion Coatings ... 705
Pack Cementation Processes 707
Aluminaizing ... 707
Siliconizing .. 708
Chromizing ... 708
Boriding (Boroznizing) of Metals
Craig Zimmerman ... 709
Characteristic Features of Boride Layers 709
Boriding of Ferrous Materials 713
Boriding of Nonferrous Materials 716
<table>
<thead>
<tr>
<th>Thermoreactive Deposition/Diffusion Process for Surface Hardening of Steels</th>
<th>Coating Processes</th>
<th>730</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toru (Tohru) Arai</td>
<td>Controlling Coating Reagent Conditions</td>
<td>732</td>
</tr>
<tr>
<td>Hardening of Steels</td>
<td>High-Temperature Salt Bath Carbide Coating</td>
<td>733</td>
</tr>
<tr>
<td>Introduction</td>
<td>High-Temperature Fluidized-Bed Carbide Coating</td>
<td>735</td>
</tr>
<tr>
<td>Coating Mechanism and Types</td>
<td>Low-Temperature Salt Bath Nitride Coating</td>
<td>736</td>
</tr>
<tr>
<td>Carbid Coating Nucleation and Growth</td>
<td>Properties of Coated Parts</td>
<td>737</td>
</tr>
<tr>
<td>Nitride Coating Nucleation and Growth</td>
<td>Practical Applications</td>
<td>738</td>
</tr>
<tr>
<td>Factors Controlling the Growth Rate of Coatings</td>
<td>Supercarburizing</td>
<td>741</td>
</tr>
<tr>
<td>J.Y. Shi</td>
<td>Supercarburizing with Conventional Carburizing Steel</td>
<td>741</td>
</tr>
<tr>
<td>Steels for Supercarburizing</td>
<td>Index</td>
<td>744</td>
</tr>
<tr>
<td></td>
<td></td>
<td>749</td>
</tr>
</tbody>
</table>
Contents

Introduction .. 1
Steel Heat Treating Process Control—An Introduction 3
 Time-Temperature Profiles ... 4
 Temperature Uniformity Surveys 6
 Furnace Atmospheres .. 10
 Quenching Parameters .. 12
 Process and Product Capabilities 13
 Design of Experiments .. 14
 Test Coupons ... 17
 Mechanical Motion Components 18
Calculation of Heat Treating Costs
 J. L. Dossett ... 20
 Introduction ... 20
 Operational Details .. 20
 Cost Separation .. 21
 Collecting Use/Cost Data .. 21
 Cost Component Allocations .. 22
 Determining the Cost of Endothermic Generator Gas 23
 Summary .. 24
Problems Associated with Heat Treating
 Laurence C. F. Canale, Jan Vatavuk, George E. Totten, and Xinmin Luo .. 29
 Phase Transformations During Heating and Cooling 30
 Cooling and Steel Metallurgical Transformation 32
 Tempering (Drawing) .. 35
 Effect of Materials and Process Design on Distortion .. 39
 Quenching ... 45
 Machining .. 51
 Grinding .. 52
 Retained Austenite ... 55
 Nonmetallic Inclusions .. 58
 Alloy Depletion .. 61
 High-Temperature Transformation Products 61
 Decarburization .. 61
 Carbides ... 63
 Influential Microstructural Features 64
 Shot Peening ... 68
 Final Comments .. 69
Steel Decarburization—Mechanisms, Models, Prevention, Correction, and Effects on Component Life
 Roger N. Wright .. 74
 General Chemical Reactions .. 74
 Diffusion-Based Models ... 74
 The Role of Ferrite in Decarburization 76
 Isothermal Phase Transformations during Decarburization ... 76
 Impact of Alloying on Vulnerability to Decarburization .. 76
 Impact of Decarburization on the Properties of Steels and Cast Irons ... 76
 Technological Operations (Process Stages) That Potentially Can Cause Decarburization 77
 Representative Decarburization Data 77
 Practical Implications for Induction Hardening 79
Heat Treatment Systems and Controls 81
 Types of Heat Treating Furnaces
 Alexey Sverdlin ... 83
 Batch-Type Furnaces ... 84
 Continuous-Type Furnaces 94
 Recuperation or Regeneration 101
 Temperature Uniformity .. 104
 Insulation of Heat Treating Furnaces 105
 Furnace Safety .. 105
 Furnace Atmospheres for Heat Treating
 Ralph Poor, Steve Ruoff, and Thomas Philips 108
 Practical Flow Formula ... 108
 Fundamentals of Gases ... 108
 Principal Gases and Vapors 109
 Furnace atmosphere gas reactions 110
 Classifications of Prepared Atmospheres 112
 Furnace atmosphere hazards 113
 Generated exothermic-based atmospheres 115
 Generated endothermic-based atmospheres 117
 Generated exothermic-endothermic-based atmospheres ... 119
 Generated dissociated-ammonia-based atmospheres ... 121
 Industrial gas nitrogen-base atmospheres 121
 Argon atmospheres .. 126
 Hydrogen atmospheres ... 127
 Atmospheres for backfilling, partial pressure operation, and quenching in vacuum 131
 Evaluating atmosphere requirements 133
 Furnace atmosphere controls in heat treating
 Jim Oakes and John Lutz .. 135
 Fundamentals of heat treating atmospheres 135
 Carbon potential control ... 136
 Furnace atmosphere control 137
 Supply atmosphere control 138
 Control of input gas .. 139
 Laboratory analysis of gas composition 140
 Sampling of atmospheres for analysis 141
 Sampling of atmospheres for control 143
 Analyzers ... 143
 Analyzer recommendations 150
 Temperature control in heat treating
 Peter Sherwin ... 152
 Factors affecting temperature control 152
 Temperature-control instrumentation 153
 Temperature scales ... 154
 Thermocouples ... 154
 Thermocouple practices 157
 Resistance temperature detectors 160
 Noncontact temperature sensors 160
 Measurement and control instruments 164
 Energy-flow regulators ... 167
 SAE-AMS 2750 specification 168
 Furnace Controls
 Jason Walls, Frank Pietraccua, Eric Boltz, and Janusz Szymborski ... 170
 Mechanical Motion Components 170
Distortion Due to Surface Hardening

- Summary .. 372

Residual Stresses and Distortion in Thermochemically Treated Steels

B. Clausen, M. Steinbacher, and F. Hoffmann 375

- Development of Residual Stresses in Carburized Steels 375
- Stress Development in Parts Due to Case Hardening 375
- Distortion Affected by the Carburization of Steels 378
- Development of Distortion during Hardening as a Subject of Time-Temperature-Transformation Diagram 378
- Distinction of Distortion Due to Heating 379
- Distinction of Distortion Due to Carburization and Hardening 379
- Development of Residual Stresses in Nitrided Steels 384
- Residual Stress Generation during Different Process Steps 384
- Diffusion Zone ... 385
- Compound Layer .. 386
- General Remarks .. 387
- Distortion Due to Nitriding of Steels ... 388
- Influence of the Nitriding Process .. 388
- Influence of the Alloy Content ... 388
- Influence of the Geometry of the Parts 388
- Prediction of Distortion ... 388

Distortion Engineering

B. Clausen, T. Lübben, and R. Rentsch 391

- Distortion Engineering, Level 1—Identification of Distortion-Relevant Parameters and Variables 391
- Distortion Engineering, Level 2—Identification of the Distortion-Relevant Mechanisms 397

Distortion Engineering, Level 3—Development of Approaches for the Compensation of Distortion

C. Simsir .. 406

- History and the State-of-the-Art .. 409
- Fundamentals of Simulation of Heat Treatments 410
- Material Data ... 419
- Process Data ... 425
- Validation of Simulations ... 427
- Application Examples ... 428
- Summary and Outlook .. 458

Reference Information ... 467

- Guide to Furnace Atmospheres ... 469
- Properties of Gases .. 472
- Furnace Atmospheres ... 472
- Combustion Efficiency .. 474
- Combustion Properties and Heat Transfer 477
- Heating and Holding Times ... 479
- Heating Times ... 479
- Hardening ... 479
- Tempering ... 479

- Heat-Transfer Equations ... 481
- Heat Conduction ... 481
- Convection Heat Transfer ... 485
- Thermal Radiation ... 492
- Index ... 515
Contents

Fundamentals .. 1
History and Applications .. 3
History .. 3
Applications of Induction Heating 4
Advantages of Induction Heating 4
Principles of Induction Heating
Sergio Lupi and Valery Rudnev 6
Heat Transfer Phenomena .. 6
Direct Current and Alternating Current Circuits
and Basic Electric Laws ... 14
Basic Concepts of the Theory of
Electromagnetic Fields ... 16
Electromagnetic and Thermal Properties of Materials
Sergio Lupi and Valery Rudnev 28
Estimation of the Basic Induction Process Parameters
Sergio Lupi and Valery Rudnev 36
Workpiece Power Estimation for Through Heating
Applications .. 36
Coil Efficiency ... 36
Frequency Selection ... 38
Conclusion .. 40

Induction Heat Treating ... 43
Metallurgy of Induction Hardening of Steel
David K. Matlock .. 45
Introduction ... 45
Steel Heat Treating Basics 45
Steel Heat Treatment by Induction Processing 50
Steel Alloys for Induction Processing 55
Principles of Induction Hardening and Inspection
Valery Rudnev, Gregory A. Fett, Arthur Griebel
and John Tartaglia .. 58
Introduction ... 58
Metallurgical Overview ... 58
Electromagnetic and Thermal Aspects 59
Induction-Hardening Techniques 66
Inductors and Heat Pattern Control 70
Quenching Techniques and Spray Quench
Subtleties .. 74
Selection of Frequency, Power, and Heat Time 75
Case Depth Evaluation .. 78
Surface Hardness Evaluation 83
Nondestructive Testing of Induction-Hardened
Parts ... 84
Quenching of Induction Heated Steel 87
Quenching Process .. 87
Hardening and Residual Stresses from
Quenching .. 88
Quenching Methods .. 91
Quenchants ... 94
Quenchant Maintenance 99
Quench System Design ... 100
Troubleshooting Quenches 101
Residual Stresses in Induction Hardened Steels
Janez Grom ... 103
Introduction ... 103
General Features of Induction Hardening 103
Residual Stresses ... 105
Residual Stresses Due to Quenching 108
Residual Stress Profiles 110
Effects on Fatigue Strength 114
Effects of Induction Hardening on Fatigue Strength and
Residual Stresses ... 118
Induction in Hybrid Processes 124
Tempering of Induction Hardened Steels
Valery Rudnev, Gregory A. Fett and S. Lee Semiatin 130
Tempering of Hardened Steel 130
Specifics of Induction Heating Process 134
Self-Tempering ... 136
Induction Tempering Methods 137
Process Parameters for Induction Tempering 139
Selection of Tempering Temperatures and Time 139
Effect of Process Variables 145
Good Practice in Induction Tempering 149
Properties of Tempered Components 151
Final Remarks ... 156
Induction Case Hardening of Axle Shafts
Gregory A. Fett ... 160
Introduction ... 160
Axle Shafts ... 160
Properties of Induction-Hardened Axle Shafts 162
Operations after Induction Hardening 170
Induction Hardening of Crankshafts and Camshafts
Gary Doyon, Valery Rudnev, and John Maher 173
Crankshafts ... 173
Induction Hardening of Camshafts 182
Induction Hardening of Gears and Gear-Like Components
Valery Rudnev and John Storm 187
Introduction ... 187
Gear Technology Overview 187
Materials Selection ... 190
Gear-Hardening Patterns and Their Applicability 191
Tooth-by-Tooth Hardening versus Spin Hardening 192
Through Heating for Surface Hardening 199
Computer Modeling 200
Inspection and Testing 202
Typical Failures and Prevention 209
Induction Hardening Off-Road Machinery Components
Marv McKimpson ... 211
Typical Applications ... 211
Materials for Induction Hardening 213
Process Considerations 215
Process Validation .. 217
Equipment Considerations 219
Future Prospects ... 220
Induction Hardening for the Aeronautic and Aerospace Industry
Christian Krause and Fabio Biasutti 222
Requirements and Characteristics 222
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cleaning the Parts Before Soldering or Brazing</td>
<td>747</td>
</tr>
<tr>
<td>Solder Filler Metals</td>
<td>748</td>
</tr>
<tr>
<td>Soldering Fluxes</td>
<td>748</td>
</tr>
<tr>
<td>Solderability of Copper-Base Metals</td>
<td>748</td>
</tr>
<tr>
<td>Common Soldered Joint Defects</td>
<td>748</td>
</tr>
<tr>
<td>Brazing Filler Metals</td>
<td>748</td>
</tr>
<tr>
<td>Types of Base Metals that Can Be Joined by Soldering or Brazing</td>
<td>749</td>
</tr>
<tr>
<td>Joint Strength and Types of Joint Designs</td>
<td>749</td>
</tr>
<tr>
<td>Selecting the Right Induction Heating Equipment</td>
<td>750</td>
</tr>
<tr>
<td>Determining Joint Quality</td>
<td>750</td>
</tr>
<tr>
<td>Establishing a Reliable Process</td>
<td>751</td>
</tr>
<tr>
<td>Using Automation to Join Parts</td>
<td>751</td>
</tr>
<tr>
<td>Documenting the Process</td>
<td>752</td>
</tr>
<tr>
<td>Conclusion</td>
<td>753</td>
</tr>
<tr>
<td>Inspection and NDT Methods</td>
<td></td>
</tr>
<tr>
<td>Vladimir Frankfurt and Philip Nash</td>
<td>754</td>
</tr>
<tr>
<td>In-Process Inspection</td>
<td>754</td>
</tr>
<tr>
<td>Destructive Methods</td>
<td>755</td>
</tr>
<tr>
<td>Nondestructive Evaluation</td>
<td>756</td>
</tr>
<tr>
<td>Control of Professional Magnetic Field Exposure—International Standards and Regulations</td>
<td></td>
</tr>
<tr>
<td>Loris Koenig</td>
<td>767</td>
</tr>
<tr>
<td>Electromagnetic Field</td>
<td>767</td>
</tr>
<tr>
<td>Concerns about Effects on Health</td>
<td>768</td>
</tr>
<tr>
<td>Direct Effects on Health</td>
<td>768</td>
</tr>
<tr>
<td>Possible Indirect Effects on Health</td>
<td>769</td>
</tr>
<tr>
<td>Normal Exposure Levels</td>
<td>770</td>
</tr>
<tr>
<td>Exposure Levels in Professional Environments</td>
<td>772</td>
</tr>
<tr>
<td>Government Oversight</td>
<td>773</td>
</tr>
<tr>
<td>Special Applications Of Induction Heating</td>
<td>781</td>
</tr>
<tr>
<td>Historical Review of Induction Glass Melting</td>
<td></td>
</tr>
<tr>
<td>David J. McEnroe</td>
<td>783</td>
</tr>
<tr>
<td>Induction Heating History</td>
<td>784</td>
</tr>
<tr>
<td>Induction Glass Melting and Forming</td>
<td></td>
</tr>
<tr>
<td>David J. McEnroe</td>
<td>787</td>
</tr>
<tr>
<td>Basics of Glass Fabrication</td>
<td>787</td>
</tr>
<tr>
<td>Melting</td>
<td>787</td>
</tr>
<tr>
<td>Forming</td>
<td>791</td>
</tr>
<tr>
<td>Induction versus Refractory</td>
<td>793</td>
</tr>
<tr>
<td>Induction Heating in Optical Fiber Draw Processing</td>
<td></td>
</tr>
<tr>
<td>Daniel W. Hawtof</td>
<td>795</td>
</tr>
<tr>
<td>Fiber Draw Tension</td>
<td>795</td>
</tr>
<tr>
<td>Temperature Requirements</td>
<td>795</td>
</tr>
<tr>
<td>Ambient Heating Environment</td>
<td>797</td>
</tr>
<tr>
<td>Heated Part Size</td>
<td>797</td>
</tr>
<tr>
<td>Susceptor Materials Selection</td>
<td>797</td>
</tr>
<tr>
<td>Nanoparticle Heating Using Induction in Hyperthermia</td>
<td></td>
</tr>
<tr>
<td>Girish Dahake</td>
<td>799</td>
</tr>
<tr>
<td>Nanoparticles</td>
<td>799</td>
</tr>
<tr>
<td>Induction Heating</td>
<td>799</td>
</tr>
<tr>
<td>Index</td>
<td>801</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>7</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>17</td>
<td>19</td>
<td>19</td>
<td>21</td>
<td>22</td>
<td>23</td>
</tr>
</tbody>
</table>

Introduction to Heat Treating of Tool Steels

Rafael A. Mesquita and Reinhold E. Schneider 277

Classification of Tool Steels 277

Production of Tool Steels ... 278

Heat Treatment Applied to Tool Steels 279

Processes and Furnace Equipment for Heat Treating of Tool Steels

R. Schneider, Rafael Mesquita, H. Altena, T. Müller and
P. Seemann .. 288

Equipment for Austenitizing, Quenching, and Tempering
of Tool Steels ... 288

Equipment for Nitriding and Nitrocarburizing of
Tool Steels .. 296

Distortion in Tool Steels

Reinhold Schneider, Rafael Mesquita
and Wolfgang Schützenhöfer 300

Nature and Causes of Distortion 300

Process Aspects of Distortion 302

Material Aspects of Distortion 304

Prediction of Distortion and Residual Stresses by
Numerical Simulation ... 307

Control of Distortion in Tool Steels 312

Design ... 312

Chemical Composition ... 312

Initial Condition ... 313

Machining Procedure .. 313

Main Heat Treatment ... 315

Stabilizing Treatments ... 316

Commercial Practice .. 319

Heat Treating of Cold-Work Tool Steels—Low- and
Un-Alloyed Water and Oil Hardenable Steels

Rafael A. Mesquita, Reinhold Schneider,
and Cristiane Sales Gonçalves 320

Water-Hardenable Tool Steels 320

Shock-Resisting Tool Steels ... 322

Oil Hardening Cold-Work Tool Steels 324

Low-Alloy Special-Purpose Tool Steels 326

Carbon-Tungsten Special-Purpose Tool Steels 327

Heat Treating of Cold-Work Tool Steels—Medium-Alloy

Air-Hardenable, High-Carbon High-Chromium and
High-Vanadium-Powder Metallurgy Steels

Rafael A. Mesquita, Reinhold S.E. Schneider and
Cristiane Sales Gonçalves .. 329

Recommended Heat Treating Practices 330

Heat Treating of Hot-Work Tool Steels

Rafael A. Mesquita, Reinhold Schneider,
and Cristiane Sales Gonçalves 336

Heat Treatment of H Series and Low-Alloy Hot-Work Steels 339

Examples of Heat-Treating Procedure for Hot-Work Tools 344

NADCA Requirements for Steel Grades and Heat
Treating ... 345

Heat Treating of High-Speed Tool Steels

Rafael A. Mesquita, Reinhold Schneider,
and Cristiane Sales Gonçalves 347

Recommended Heat-Treating Procedures 350

Hardening of Specific Machine Tools 354

Heat Treating of Mold Steels and Corrosion-Resistant Tool Steels

Rafael A. Mesquita, Reinhold Schneider,
and Cristiane Sales Gonçalves 358

Mold Steels ... 358

Recommended Heat Treating Practices 358

Corrosion-Resistant Tool Steels 359

Recommended Heat Treating Practices 360

Heat Treated High-Alloy Steels 363

Heat Treating of Ferritic Stainless Steels 365

Metallurgy of Ferritic Stainless Steels 365

Alloy Types ... 366

Annealing .. 368

Stabilization ... 368

Castings ... 368

Properties ... 369