For more than a decade, the atomic force microscope (AFM) has been a cornerstone for nanoprobing integrated circuits, due its precise force control, nanometer-scale resolution, and nondestructive nature. New capabilities, such as scanning conductance, scanning capacitance, pulsed current-voltage measurement, and capacitance-voltage spectroscopy, have been widely adopted by the integrated circuit analysis community. Many new techniques continue to be developed, and this article presents two techniques: diamond milling and electrostatic force microscopy.

DIAMOND MILLING WITH AN AFM

Preparation of integrated circuits for nanoprobing typically involves the global delayering of a die with mechanical polishing to the desired layer. Dimpling and computer numerical control milling tools have also been employed to more locally delayer (typically at the millimeter scale). However, these methods become more time-consuming, risky, and challenging as layer thicknesses decrease. One such challenge is the requirement to provide a surface for nanoprobing that is clean, conductive, and at the desired level. Another challenge is the requirement to provide a large area for nanoprobing at the appropriate level, because different regions often polish at different rates. In early technology nodes, levels tended to be etch-selective and self-planarized on metal or dielectric layers. Thus, the integrated circuit could be delayered uniformly to any desired level. However, for advanced technologies, it is increasingly difficult to provide all of these properties in one process.

As a surface electrical failure analysis technique, nanoprobing can be performed on either a single interconnect layer or a sequence of multiple interconnect layers, with delayering steps in between. If front-end devices are suspected and back-end metal defects can be ruled out, a single sample-preparation step and subsequent nanoprobing can usually achieve high levels of success. However, it is often necessary to check the interconnect layer by layer with nanoprobing to verify if a defect (open or short) is still present. In the past, this type of job required removal of the integrated circuit from the nanoprobing tool, removal of a metal layer, and placement of the modified integrated circuit back in the tool for another round of nanoprobing. When an analysis must sequentially nanoprobe four to ten layers of metal, the turnaround time and success rate of the analysis becomes problematic.

For site-specific delayering, failure analysts often use focused ion beam (FIB) milling, as an alternative to mechanical delayering techniques. In the case of layer-by-layer analysis, the FIB is used to either open a window or cut traces to isolate defects. While this may be effective in the case of gross defects, changes in electrical characteristics are often associated with the FIB milling process itself, instead of the removal of the defective layer. Focused ion beam milling with a gallium beam significantly alters subsequent electrical measurements by charging associated with the high-energy gallium ion impacts, as well as by introducing significant leakage paths from gallium.
deposition and implantation. Thus, during critical device probing, it is difficult to rule out whether an electrically measured defect is intrinsic or caused by the FIB milling process itself. Focused ion beam milling with a xenon beam was recently introduced. It is a promising alternative to gallium, but its charging effects have yet to be characterized.

Diamond milling with a nanoprober is a new alternative for site-specific sample preparation and delayering of integrated circuits. Diamond milling provides in situ, localized, precision delayering inside of a nanoprobing tool, thereby decreasing the turnaround time for integrated circuit analysis. Furthermore, like other mechanical delayering techniques, it should not alter the electrical characteristics of the integrated circuit. Diamond milling with an AFM was first demonstrated several years ago. This article presents the application of diamond milling to site-specific delayering of integrated circuits.

A single-crystal, faceted diamond tip and a retro-reflecting mirror were mounted on the end of an AFM cantilever to form the probe shown in Fig. 1(a). The diamond had an end radius of approximately 10 nm, as shown in Fig. 1(b). Several experiments were conducted to determine the optimal process for delayering a 1 µm by 1 µm area in a static random access memory region of a 22 nm integrated circuit with the diamond probe from the second metal level to the first metal level. Milling was conducted with a triangle wave (constant velocity) scan in the forward and reverse direction for each line in the milled area, as illustrated in Fig. 2(a). A second orthogonal scan was then conducted on the same area with the fast and slow axes switched, as illustrated in Fig. 2(b). Finally, the diamond probe was scanned over the area in constant-force contact mode to sweep the surface of the removed material. Although the integrated circuit is composed of relatively hard materials, these materials are easily cut by the diamond, which is more than an order of magnitude harder. After a host of trials, the diamond exhibited no significant wear, as expected.

Contact imaging of a 3 µm by 3 µm area, which includes the milling region, is shown in Fig. 3(a). The first metal level is clearly visible in the milled region, while the second metal level in the surrounding region remains undisturbed. A line cut across the milled region of the image is shown in Fig. 3(b), which indicates 20 nm of height difference between the metal levels, as well as the generated topography on the first metal level, due to the difference in material-removal rates for the metal and dielectric. In a multiheaded AFM, the sequence of a diamond milling probe and a finer tungsten electrical probe will provide in situ milling capability for sample preparation and delayering. The diamond milling process is similar to other mechanical delayering techniques and therefore is not expected to destructively alter the

![Fig. 1](a) AFM diamond probe with (b) single-crystal, faceted diamond tip
![Fig. 2](a) Diamond milling (a) in first direction, X, and then (b) in second direction, Y
electrical characteristics of the integrated circuit. The authors have also used the diamond probe to mill trenches in silicon as a method of marking cross-sectional scanning capacitance samples. It should be noted that the shape of the diamond tip determines the maximum vertical aspect ratio of diamond-milled trenches.

Electrostatic force microscopy (EFM) is a type of vibrating noncontact AFM in which the force generated by applying an electrical potential difference between an AFM probe tip and a sample is measured.\(^{[5,6]}\) The authors demonstrate that EFM provides capabilities similar to electron beam absorbed current (EBAC) microscopy without the associated high-energy electron beam damage.\(^{[7,8]}\) Since the first description and demonstration of EFM, measurements have used only a single AFM probe.\(^{[9,10]}\) Electrostatic force microscopy of integrated circuits was then demonstrated with the additional capability to measure operating circuit potentials.\(^{[11,12]}\) As illustrated in Fig. 4(a), the potential \(V_1\) applied to the scanning probe and the potential \(V_2\) applied to the substrate result in intermediate potentials on nanostructures within the integrated circuit. The applied potential difference typically has both constant and alternating components, to maximize the electrostatic force and its effect on the cantilever resonance.

The capacitance between the AFM probe tip apex and nearby region of the integrated circuit is an essential component of the EFM technique. However, parasitic capacitance from the entire integrated circuit to the AFM probe tip cone and cantilever creates additional measured force.\(^{[13]}\) Furthermore, in a delayered integrated circuit, the nanostructures at or near the surface may have potentials that are less clearly defined, due to junctions and resistance along multiple paths to the driven substrate potential. Parasitic capacitance and loosely constrained potentials create scanned images with poor signal-to-noise and unclear sources of the resulting potential map. In the past, these issues have limited the usefulness of EFM as an integrated circuit analysis technique.

Additional AFM probe tips may be introduced to define local boundary conditions on the potential at the nanometer scale, and this technique has been termed “Active EFM.” As illustrated in Fig. 4(b), the potential \(V_3\) applied to a second, fixed probe defines the potential on the nanostructure, which could be a device or metal wire net. The additional fixed probe tips may or may not be in contact with the integrated circuit, to influence the local potential of the nanometer-scale structures. This article presents experimental results of single-probe EFM on an integrated circuit and then presents the advantages of selectively biasing individual metal lines in subsequent Active EFM measurements on the same integrated circuit.

Figure 5(a) is a vibrating noncontact AFM topography image of a 4 \(\mu\)m by 4 \(\mu\)m area of an integrated circuit at

(continued on page 8)
Look to JEOL for reliable imaging and analytical tools designed for both routine and exacting failure analysis.

JEOL SEMs, TEMs, and sample preparation instruments are versatile, easy to use, and an uncompromising choice when it comes to valuing your time, yield, and bottom line. JEOL USA is #1 in service, technical and applications support.
the second metal level above the transistors, fabricated by 22 nm process technology. Figure 5(b) is a single-probe EFM image taken of the same area with the scanning probe held at a constant height. In the bottom right region of the image, it is possible to discern the metal lines from the dielectric, but the connection paths between metal lines and the substrate are unclear due to the floating potentials. The upper left region of the image is blurrier due to sample tilt. The first demonstration of the Active EFM technique is shown in Fig. 6(a), with the scanning probe held at constant height and the fixed probe in contact with a metal line on the surface, thereby driving its potential. Figure 6(b) is an overlay of the Active EFM signal from Fig. 6(a) onto the AFM topography image of Fig. 5(a) that indicates the location of the fixed probe and EFM signal relative to the integrated circuit.

The second demonstration of the Active EFM technique is shown in Fig. 7(a), with the scanning probe held at constant height and the fixed probe placed in contact with another metal line on the surface. The second probe drives not only the potential of the surface metal line but also the potential of a subsurface metal line via a circuit interconnection. The faint signal extending beyond the end of the strong signal in Fig. 7(a) indicates that a subsurface metal line is electrically connected to the driven surface line. For electrical fault isolation, this has applications for tracing paths associated with driven potentials, for example, in localizing opens. Figure 7(b)
is an overlay of the Active EFM signal from Fig. 7(a) onto the AFM topography image of Fig. 5(a) that indicates the location of the fixed probe and EFM signal relative to the integrated circuit. All images in Fig. 5 to 7 were of the same 4 µm by 4 µm area.

In EFM, the force \((F) \) on the scanning probe tip due to the oscillating electric field is proportional to the gradient in capacitance \((C) \) with height \((Z) \) and the potential difference \((V) \) squared \((F \sim (dC/dZ) \cdot V^2).^{[10]} \) The capacitance gradient between the scanned probe tip and integrated circuit changes as the suspended, scanned probe tip passes over metal or dielectric, as shown in Fig. 5(b). In the single-probe EFM measurement presented, the substrate is held at a constant potential, \(V_2 \), and the scanned probe is driven with an alternating potential, \(V_1 \). In both of the Active EFM measurements presented, the scanned probe and substrate potentials, \(V_1 \) and \(V_2 \), respectively, were held at ground potential, while constant and alternating potential, \(V_3 \), was applied to the fixed probe. Thus, in Active EFM, the substrate may be used to guard the potential of the nanometer-scale structures that are driven by the fixed probes. In all of the EFM measurements presented, the frequency of the alternating potential was selected to match the frequency of the cantilever resonance, thereby driving the oscillation of the cantilever. A lock-in amplifier was used for synchronous detection of the AFM cantilever displacement amplitude associated with the cantilever oscillation. Thus, the amplitude or phase of the cantilever resonance can be measured by the same mechanism for non-contact-mode AFM imaging. It should be noted that the fixed probe must be placed outside of the field of view of the scanning probe to prevent mechanical conflict.

SUMMARY

This article has demonstrated that AFM diamond probe milling is a promising new method for in situ, localized, precision delayering of integrated circuits. It has also demonstrated that Active EFM can significantly improve the selectivity of individual circuit nodes relative to single-probe EFM. Active EFM provides a nondestructive alternative to EBAC microscopy for localization of opens in integrated circuit analysis.

REFERENCES

Every so often, system issues point to component-level problems. Communications and automotive systems require high power and high bandwidth. We see a lot of standard quad flat no-lead packages, although when power or bandwidth is stretched, more sophisticated packages are needed to ensure proper transmission between silicon and system. Such packages require new FA techniques (but not necessarily new tools), especially when observations fall in between silicon scale (nanometer) and bond size (micrometer)—as exemplified by 2.5-D and 3-D/through-silicon via integration schemes.

Finally, AMRF applications do not require the computing processing needed by advanced CMOS, but they do require high voltage or high speed from alternate materials such as SiGe or III-Vs (e.g., GaAs, GaN, InP). These devices are not usually challenged in their capability to transport rising or falling fronts on time like SOCs but rather by their parametric capabilities. This leads to analyses wherein relating a failed bin to a device behavior is much more critical than tracing a failed pin down to a specific transistor.

A pattern has emerged in our FA practice within the AMRF field. It is no longer how fast we can get into complex semiconductor devices that really matters but how soon we can relate an external failure to a faulty behavior—at the system, package, or component level. Therefore, it is less a matter of having the fastest tool than having the right knowledge and expertise. Of course, advanced FA tools will continue to be critical for SOC product engineering and industrialization, predominantly in large IDMs. When it comes to new AMRF applications, legacy tools can be used with success as long as the right expertise and experience is there to guide their usage and interpret the data they produce.
QuantumScope™
Failure Analysis Microscopes

Semiconductor FA engineering requires efficient tools for rapid localization of IC defects:

- ohmic shorts
- impedance issues
- leakage currents
- leaky capacitors
- oxide defects
- damaged junctions
- resistive vias
- CMOS latch up
- ESD damage
- dynamic failures
- speed path issues

QFI suggests maximizing your defect capture rate... NOT your capital expenditure rate.

QuantumScope™ integrates XIVA™ LSIM, Thermal-HS hot spot detection, and emmi™ photoemission into a single, high-performance, microscope platform. Semiconductor FA is more efficient and more accurate when the DUT remains mounted in a single diagnostic tool during all three of these FA microscope techniques. QuantumScope™ eliminates the need for multiple separate systems, freeing capital for other requirements. QFI systems are modular in design and generally compatible with field upgrade.

Quantum Focus Instruments Corporation
2385 La Mirada Drive • Vista CA 92081
Phone: +1 (760) 599-1122
Fax: +1 (760) 599-1242
e-mail: sales@quantumfocus.com
http://www.quantumfocus.com