Conventional hot stamp components can provide excellent intrusion resistance as a result of their very high tensile strength. However, the fully martensitic structure produced in conventional hot stamping has limited ductility, making the process unsuitable for many components in the vehicle structure. This restriction can be overcome by creating hot stamp components that have localized soft zones intended to strategically deform and absorb crash energy. One effective method to achieve this type of tailored performance is the use of in-die controlled cooling. In this process variation, the hot stamp dies contain heated inserts which slow quench rates and create the localized soft zones. This technology was recently applied to number of key components in a new vehicle structure. These components featured narrow soft zones based on specific metallurgical characteristics and mechanical properties. The high ductility soft zones were a key enabler in creating extremely efficient and lightweight designs.