Advances in Materials Technology for Fossil Power Plants

Proceedings from the Sixth International Conference
August 31–September 3, 2010
Santa Fe, New Mexico, USA

Editors
D. Gandy
J. Shingledecker
R. Viswanathan

Sponsored By

EPRI Report Number 1022300

Published By
ASM International®
Materials Park, Ohio 44073-0002
www.asminternational.org
Conference Organizing Committee

John Shingledecker
EPRI, United States

Robert Purgert
Energy Industries of Ohio, United States

David Gandy
EPRI, United States

Patricia Rawls
NETL, United States

Vis Viswanathan
EPRI, United States

Robert Romanosky
U.S. Department of Energy, United States

Fred Glaser
U.S. Department of Energy, United States

Robin Schwant
General Electric, United States

Steve Goodstine
Alstom Power, United States

Mike Santella
Oak Ridge National Laboratory, United States

Horst Hack
Foster Wheeler, United States

Jim Tanzosh
Babcock & Wilcox, United States

Paul Jablonski
NETL, United States

Terry Totemeier
Alstom Power, United States

Mario Marrocco
Ohio Coal Development Office, United States

Brian Vitalis
Babcock Power, United States

Phil Maziasz
Oak Ridge National Laboratory, United States
International Advisory Board

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fujio Abe</td>
<td>National Institute for Materials Science, Japan</td>
</tr>
<tr>
<td>Rudolph Blum</td>
<td>Elsam Engineering A/S, Denmark</td>
</tr>
<tr>
<td>Steve Brett</td>
<td>RWE npower, United Kingdom</td>
</tr>
<tr>
<td>Brian Cane</td>
<td>TWI Ltd., United Kingdom</td>
</tr>
<tr>
<td>Horst Cerjak</td>
<td>Graz University of Technology, Austria</td>
</tr>
<tr>
<td>Sastry Cheruvu</td>
<td>Southwest Research Institute, USA</td>
</tr>
<tr>
<td>Giuseppe Cumino</td>
<td>Tenaris, Italy</td>
</tr>
<tr>
<td>Augusto Di Gianfrancesco</td>
<td>Centro Sviluppo Materiali S.p.A, Italy</td>
</tr>
<tr>
<td>Philip Doubell</td>
<td>ESKOM</td>
</tr>
<tr>
<td>Jude Foulds</td>
<td>Clarus Consulting, LLC., USA</td>
</tr>
<tr>
<td>Gerhard Fuchs</td>
<td>University of Florida, USA</td>
</tr>
<tr>
<td>Tom Gibbons</td>
<td>Consultant, USA</td>
</tr>
<tr>
<td>John Hald</td>
<td>Technical University of Denmark, Denmark</td>
</tr>
<tr>
<td>Stuart Holdsworth</td>
<td>EMPA, Switzerland</td>
</tr>
<tr>
<td>Masaaki Igarashi</td>
<td>Sumitomo Metal Industries, Ltd., Japan</td>
</tr>
<tr>
<td>Kazuhiro Kimura</td>
<td>National Institute for Materials Science, Japan</td>
</tr>
<tr>
<td>Leon Klingensmith</td>
<td>Wyman-Gordon, USA</td>
</tr>
<tr>
<td>Karl Maile</td>
<td>MPA Stuttgart, Germany</td>
</tr>
<tr>
<td>Fujimitsu Masuyama</td>
<td>Kyushu Institute of Technology, Japan</td>
</tr>
<tr>
<td>Andy Morris</td>
<td>E.ON-UK, United Kingdom</td>
</tr>
<tr>
<td>John Oakey</td>
<td>Cranfield University, United Kingdom</td>
</tr>
<tr>
<td>Jonathan Parker</td>
<td>Structural Integrity & Associates, Canada</td>
</tr>
<tr>
<td>Samuel Perez</td>
<td>Iberdrola, Spain</td>
</tr>
<tr>
<td>Cynthia Powell</td>
<td>NETL, USA</td>
</tr>
<tr>
<td>John Price</td>
<td>Monash University, Australia</td>
</tr>
<tr>
<td>Seog-Hyeon Ryu</td>
<td>Doosan Heavy Industries, Korea</td>
</tr>
</tbody>
</table>
Ashok Saxena
University of Arkansas, USA

Raman Singh
Monash University, Australia

Jose Antonio Tagle
Iberdrola, S.A., Spain

Yukio Takahashi
CRIEPI, Japan

Yasuhiko Tanaka
Japan Steel Works, Japan

Stefanie Tschegg
BOKU University in Vienna, Austria

Ian Wright
Consultant, USA

Xishan Xie
Institute for Science and Technology, China
Contents

Preface ... xv

Section 1: Technology Overview (Plenary Session)

The European Perspective and Advancements for Advanced USC Steam Power Plants 1
Rudolph Blum and Jørgen Bugge

R&D Program for A-USC Material Development with
Creep Strength/Degradation Assessment Studies ... 11
Fujimitsu Masuyama

Structure Stability Study on Fossil Power Plant Advanced Heat-Resistant Steels and
Alloys in China .. 30
Xishan Xie, Chengyu Chi, Hongyao Yu, Qiuying Yu, Jianxin Dong, and Shuangqun Zhao

Economic Analysis of Advanced Ultra-Supercritical Pulverized Coal Power Plants:
A Cost-Effective CO2 Emission Reduction Option? .. 53
Jeffrey N. Phillips and John M. Wheeldon

Fossil Materials Research at EPRI .. 65
D. Gandy and J. Shingledecker

Section 2: USC Boiler Materials

Advances in Materials Technology for A-USC Power Plant Boilers 72
Masaaki Igarashi, Hiroyuki Semba, Mitsuharu Yonemura, Tomoaki Hamaguchi,
Hirokazu Okada, Mitsuru Yoshizawa, and Atsuro Iseda

GKM Test Rig: Investigation of the Long Term Operation Behavior of Tubes and
Forgings Made of Alloys for Future High Efficient Power Plants 86

Optimization of INCONEL® Alloy 740 for Advanced Ultra Supercritical Boilers 96
B.A. Baker, Ronald D. Gollihue

Microstructural Evolution in Nimonic 263 for High Temperature Power Plant 110
S.A. Smith, G.D. West, K. Chi, W. Gamble, and R.C. Thomson
Long Term Properties and Microstructural Evolution of ASTM Grade 23 127
S. Caminada, G. Cumino, L. Cipolla, S. Tiberi Vipraio, and A. Di Gianfrancesco

Evaluation of 18Cr-9Ni-3Cu-Nb-N Austenitic Stainless Tubes for
Ultra-Supercritical Power Boiler ... 140
Zheng Kaiyun, Wang Yanfeng, and Cui Zhengqiang

Long-Term Creep Properties of 2.25Cr-1.6W-VNbB Steel (T23/P23) for
Fossil Fired and Heat Recovery Boilers .. 153
H. Okada, M. Igarashi, M. Yoshizawa, S. Matsumoto, T. Nakashima, and A. Iseda

Effect of Pre-Strain on Creep Properties of Alloy 740 164
Keiji Kubushiro, Kyohei Nomura, Satoshi Takahashi, Madoka Takahashi, and
Hirokatsu Nakagawa

Section 3: Oxidation and Fireside Corrosion

The Effect of Heat Flux on the Steam Oxidation Kinetics and
Scale Morphology of Low Alloy Materials ... 171
A.T. Fry, L.J. Brown and J.P. Banks

Effect of Grain Size on Steam Oxidation for Shot-Peened Stainless Steels 185
Y. Nishiyama, A. Iseda, M. Yoshizawa, S. Matsumoto, and M. Igarashi

Characterization of Steam-Formed Oxides on Candidate Materials for USC Boilers 198
J.M. Sarver and J.M. Tanzosh

Steam-Side Oxide Scale Exfoliation Behavior in Superheaters and Reheaters:
Differences in the Behavior of Alloys T22, T91 and TP347 Based on
Computer Simulation Results ... 213
Adrian S. Sabau, John P. Shingledecker, and Ian G. Wright

Characterization of Reaction Products from Field Exposed Tubes 243
K.A. Unocic, B.A. Pint and I.G. Wright

Oxidation of Candidate Alloys and Coatings for A-USC Applications 254
Terry C. Totemeier and Steven L. Goodstine

Modeling Fireside Corrosion of Heat Exchanger Materials in
Advanced Energy Systems .. 255
T. Lant, C. Keefe, C. Davies, B. McGhee, N. Simms, and T. Fry

Online Gas Measurements in a Pilot-Scale Combustion Facility for
Fireside Corrosion Study ... 268
Steven C. Kung
In Situ Corrosion Testing of Ultrasupercritical Tube and Weld Overlay Materials288
E.S. Robitz and J.M. Tanzosh

Coal Ash Corrosion Properties of Ni-Based Alloy for Advanced-USC Boilers303
Yasuhiro Tanaka, Nobuyoshi Komai, and Hiroshi Suganuma

Materials Performance of Oxyfuel Turbine Alloys ..312
G.R. Holcomb and P. Wang

Section 4: USC Turbine Materials

Advanced USC Technology Development in Japan ..325
Masafumi Fukuda, Eiji Saito, Yoshinori Tanaka, Takeo Takahashi, Shinji Nakamura,
Jun Iwasaki, Shinichi Takano, and Sakae Izumi

The Role of Boron in Long Term Stability of a
CrMoCOB (FB2) Steel for Rotor Application ...342
A. Di Gianfrancesco, L. Cipolla, M. Paura, S. Tiberi Vipraio, D. Venditti,
S. Neri, and M. Calderini

Effect of Grain Size on Mechanical Properties of Ni-Fe Base Superalloy for
Advanced USC Turbine Rotor Materials ...361
Satoru Ohsaki, Tatsuya Takahashi, Shinya Imano, Jun Sato, and Eiji Saito

Low Thermal Expansion Ni-Base Superalloy for
700 °C Class Steam Turbine Plant (USC141) ...373
H. Kamoshida, S. Imano, E. Saito, T. Uehara, T. Toga, and T. Nonomura

Alloy Design of Ni-Base Superalloys Aiming for
Over 750°C Class A-USC Steam Power Plant ...386
Jun Sato, Hironori Kamoshida, Shinya Imano, Toshihiro Omori, and Kiyohito Ishida

The Manufacture of Large, Complex Fossil Components Using
Powder Metallurgy and HIP Technologies—A Feasibility Study393
D. Gandy, J. Shingledecker, and L. Lherbier

Creep Rupture Strength and Microstructural Investigation of
12% Cr Steel Large Forgings for Ultra-Supercritical Steam Turbine Rotors408
M. Mikami, Y. Wakeshima, and T. Miyata

Development Status of Ni-Fe Base Superalloy for
700 °C Class A-USC Steam Turbine Rotor Application423
Shinya Imano, Jun Sato, Hironori Kamoshida, Eiji Saito, Koji Kajikawa,
Satoru Ohsaki, and Tatsuya Takahashi
Advanced Forgings for Highly Efficient Fossil Power Plants 436
N. Blaes, B. Donth, A. Diwo, and D. Bokelmann

Corrosion-Fatigue in Steam Turbine Blades .. 450
R.N. Salzman, N.F. Rieger, S. Tschegg, B. Schönauer, A. Turnbull, S. Zhou, and
D. Gandy

High-Temperature Erosion Testing Standard and Round Robin Testing 470
V.P. "Swami" Swaminathan, Jeffery S. Smith, and Dave Gandy

Section 5: Creep and Life Management

Creep-Fatigue in Steam Turbine Materials ... 487
S.R. Holdsworth

Validation of Creep Crack Growth NSW Model in Extrapolating Short-Term
Laboratory Test Results to Longer-Term Service Component Failure Prediction 504
Shervin Maleki, Yan-Hui Zhang, and Kamran Nikbin

Creep Behaviour of Advanced Power Plant Steels after
Long-Term Isothermal Ageing .. 516
V. Sklenicka, K. Kucharova, M. Svoboda, and A. Kroupa

Life Assessment of High Temperature Welded Components 530

Nondestructive Evaluation Methods of Microstructure in Power Plant Steel Grades 554
S. Meir, S. Liu, B. Mishra, D.L. Olson, A.N. Lasseigne, K. Coleman, and R. Hellner

The Effect of Service Aging on the Creep-Fatigue Properties of
Alloy 617 Parent Metal and Welds ... 571
W.L. Gamble

Creep and Creep-Fatigue Behavior of Grade 92 Base Metal and Welded Joints 584
Y. Takahashi and D. Gandy

New Concepts for Integrity and Lifetime Assessment of Boiler and
Turbine Components for Advanced Ultra-Supercritical Fossil Plants 603
C. Feuillette, K. Schmidt, K. Maile, A. Klenk, and E. Roos

Section 6: 9% Cr Alloys

Creep Deformation Behavior and Alloy Design Philosophy of
Creep-Resistant Tempered Martensitic 9Cr Steel .. 620
F. Abe
Boron Strengthening in Ferritic 9Cr3W3CoVNbBN Steel with Improved Crossweld Creep Performance .. 640
Peter Mayr, Ivan Holzer, Mihaela Albu, Gerald Kothleitner, Horst Cerjak, and Samuel M. Allen

Microstructural Degradation during High Temperature Exposure Up to 10^7 H and Its Effects on Creep of Gr. 91 Steel .. 654
R.P. Chen, H. Ghassemi Armaki, K. Maruyama, Y. Minami, and M. Igarashi

Effects of Variation of Phase Chemistry on Multi-Region Stress Rupture Properties at 625°C for P92 Steel .. 667
Z.F. Peng, L.S. Cai, F.F. Peng, Y.P. Hu, and F.Y. Chen

The Effect of Duration of Stress Relief Heat Treatments on Microstructural Evolution and Mechanical Properties in Grade 91 and 92 Power Plant Steels 679
L. Li, P. Zhu, G. West, and R.C. Thomson

Microstructural Evolution of P92 Steel during Creep .. 693
Qinxin Zhao, Ting Li, Xiang Deng, and Dingnan Cheng

On Creep-Rupture Property Assessment for 9-12% Cr Ferritic Heat-Resistant Steels 705
Z.F. Peng, Y.Y. Dang, and F.F. Peng

Key Life Management Issues with Grade 91 Steel .. 715
Jonathan Parker and Kent Coleman

Long-Term Creep Strength Property of Advanced Ferritic Creep Resistant Steels 732
K. Kimura, K. Sawada, and H. Kushima

Estimates for the Onset of Type IV Cracking in Grade 91 Power Plant Components 752
S.J. Brett

P(T)91 Steel-A Review of Current Code and Fabrication Practices 762
Pradip Goswami

The Effect of Simulated Post Weld Heat Treatment Temperature Overshoot on Microstructural Evolution in P91 and P92 Power Plant Steels 787
R.C. MacLachlan, J.J. Sanchez-Hanton, and R.C. Thomson

Effect of Tempering on Microstructure and Properties of Grade 91 Steel 800
Terry C. Totemeier and Ian J. Perrin
Section 7: Advanced Coating Technologies

Evaluation of Nanocrystalline MCrAl Coatings for Power Plants .. 801
N.S. Cheruvu, R. Wei, J. Shingledecker, and D.W. Gandy

Abradable Coatings Development and Validation Testing for Application on Steam Turbine Components ... 821
Dieter Sporer, Scott Wilson, Petr Fiala, and Ruediger Schuelein

Performance of Al-Rich Oxidation Resistant Coatings for Fe-Base Alloys 839
B.A. Pint

Nano-Structured Erosion Resistant Coatings for Gas and Steam Turbines 850
V.P. “Swami” Swaminathan, Ronghua Wei, and David W. Gandy

Section 8: USC Castings

Processing of Advanced Alloys for A-USC Steam Turbine Applications 872
Paul D. Jablonski, Jeffery A. Hawk, Christopher J. Cowen, and Philip J. Maziasz

High-Temperature Control Valves for the 700°C Fossil Fired Power Plant 886
B. Föllmer, K. Metzger, K. Maile, C. Hoffmann, and M. Rohr

High-Temperature Mechanical Properties and Microstructure of Cast Ni-Based Superalloys for Steam Turbine Casing Applications ... 900
P.J. Maziasz, N.D. Evans, and P.D. Jablonski

Section 9: Advanced Stainless Steels

Mechanical Properties and Microstructure of a Wrought Austenitic Stainless Steel for Advanced Fossil Power Plant Applications .. 916
D. Gandy, J.P Shingledecker, P.J. Maziasz, G. Maurer, J. Magee

Strain Induced Hardening of Advanced Austenitic Stainless Steels
Evaluation of Creep Properties .. 933
P. Moody and Doosan Babcock

Prediction of Microstructural Evolution in Austenitic Stainless Steels for Extended Life Power Plant Applications ... 949

Creep Rupture Properties of HR6W for Advanced-USC Boilers .. 962
Nobuhiko Saito and Nobuyoshi Komai
Sigma Phase Precipitation in 347HFG Stainless Steel for Supercritical Power Plant Operation ... 972
D. West, J. Hulance, R.L. Higginson, and G. Wilcox

Mechanical Properties and Microstructures of an S304H-Type Steel Subjected to Hot Working ... 986
Z. Yanushkevich, A. Mogucheva, M. Tikhonova, A. Belyakov, and R. Kaibyshev

Section 10: Weld Performance

Weldability of EPRI P87 .. 995
J.A. Siefert, J.M. Tanzosh, and J.P. Shingledecker

Toughness Evaluation of Welds in 9Cr-1Mo-V and 9Cr-0.5Mo-V Steels Made Using the Flux-Cored Arc Welding (FCAW) Process ... 1014
C.E. Jaske, Z. Berg, and T. Andress

Flux Cored Wires for High Integrity Applications .. 1030
William F. Newell, Jr.

Weldability of Inconel® Alloy 740 ... 1045
J.A. Siefert, J.M. Tanzosh, and J.E. Ramirez

Long-Term Creep Rupture Strength of Weldment of Candidate Ni and Fe-Ni Based Materials for Tube and Pipe of A-USC Boilers ... 1067
G. Bao, T. Sato, and Y. Marumoto

Section 11: Reference Information

Author Index .. 1077

Subject Index ... 1081
Over 180 participants from 16 countries traveled to Santa Fe, New Mexico, to be part of the EPRI Sixth International Conference on Advances in Materials Technology for Fossil Power Plants. The four-day conference featured a combination of invited plenary talks, session keynote papers, and technical presentations covering a wide range of subjects pertaining to the use and development of materials for fossil power plants and provided a unique forum for exchange between scientists, engineers, and utilities. This proceeding builds on the successful previous conferences which have been held every three years since 1995 in the following locations: London (England), San Sebastian (Spain), Swansea (Wales), Hilton Head Island (United States), and Marco Island (United States). ASM and EPRI have partnered to publish the last two proceedings and are now pleased to present this volume. In this proceedings, 80+ papers have been included capturing the current state-of-the technology developments (Section 1), ultrasupercritical (USC) boiler materials (Section 2), oxidation and fireside corrosion (Section 3), USC turbine materials (Section 4), creep and life management (Section 5), 9% chromium alloys (Section 6), advanced coating technologies (Section 7), USC castings (Section 8), advanced stainless steels (Section 9), and weld performance (Section 10).

The genesis of this conference and the reason for its success, even amidst a global recession and reduced energy demand, is the worldwide interest in advanced high-efficiency coal power plants. The abundance of coal and the need to maintain a viable coal option, fuel prices, and most importantly the requirements to reduce emissions and CO₂, provide the impetus for improved plant efficiency. The net thermal efficiency of fossil plants has improved from 33% high-heating value (HHV) in the case of the aging fleet of “subcritical plants” to nearly 42% HHV for supercritical plants operating under steam conditions of 1100°F/3600 psi (593°C/25 MPa). To boost efficiencies above 45% HHV, research and development projects are being carried out in Europe, the United States, and Japan on Ultrasupercritical (USC) powerplants (now emerging around the globe with operation above 1100°F/3600psi) and Advanced Ultrasupercritical (A-USC) power plants that can operate at steam conditions of 1300°F/4000 psi (700°C/28 MPa) and above. In Europe, in-plant demonstrations of prototype A-USC components are under way. In the United States, a five-year effort, aimed at A-USC boiler and steam turbine material qualification, has been completed and follow on work under phase 2 is in progress. Additionally, material advancements are now being made to integrate these A-USC technologies with oxyfuel combustion as an attractive option for carbon sequestration.

The key enabling technology that drives high-efficiency power plants is the development of advanced materials and coatings with a considerable increase over traditional alloys in creep strength and corrosion resistance. Major strides have been made in 9–12% chromium (Cr) ferritic steels containing boron (B), cobalt (Co), tungsten (W), and other elements for both boilers and steam turbines that are capable of operating at temperatures of up to ~1150°F (625°C). To operate beyond this limit, vastly improved austenitic steels and alloys such as HR3C, NF 709, Super 304 H, 347 HFG, HR6W, are being evaluated. For operation above 1300°F (700°C) nickel-based alloys such as Inconel 740, alloy 230, 617, 263, and Haynes 282 are needed. Optimization of component fabrication processes including forming, welding, casting and forging are a critical factor in serviceability of these alloys.
Research on these topics and materials are covered in the Proceedings.

Finally, the conference featured a special Honorary Session for the retirement of Professor Vis Viswanathan (FASM) in which many of his outstanding achievements were described by long time colleagues and friends. This was a remarkable and deserved tribute to one of the commanding figures of his generation in the field of power engineering materials. His contributions to the field cannot be understated.

D. Gandy and J. Shingledecker

2010