Contents

Preface ... ix

CHAPTER 1: The Effects and Economic Impact of Corrosion1
The Definition of Corrosion.. 2
The Effects of Corrosion .. 3
The Many Forms of Corrosion .. 4
Methods to Control Corrosion ... 6
Material Selection ... 6
Coatings ... 7
Inhibitors ... 8
Cathodic Protection .. 8
Design ... 8
Opportunities in Corrosion Control .. 9
The Economic Impact of Corrosion .. 10
Sources of Information .. 14
Appendix: Addresses of Trade Associations and Technical Societies Involved with Corrosion 17

CHAPTER 2: Basic Concepts Important to Corrosion21
Behavior of a Metal in an Environment 21
The Four Requirements of a Corrosion Cell 23
Metal Characteristics Important to Corrosion 25
Metallurgical Characteristics .. 25
Inherent Reactivity .. 35
Formation of Corrosion Products ... 37
Important Solution Characteristics ... 38
Corrosion Rate Expressions and Allowances 45

CHAPTER 3: Principles of Aqueous Corrosion49
The Thermodynamics of Aqueous Corrosion 50
Hydrogen Damage .. 180
Hydrogen Embrittlement .. 180
Hydrogen-Induced Blistering .. 184
Cracking from Precipitation of Internal Hydrogen 185
Hydrogen Attack .. 186
Hydride Formation .. 187
Prevention of Hydrogen Damage 188
Liquid-Metal Embrittlement .. 189

CHAPTER 5: Types of Corrosive Environments 193
Characteristics of Corrosive Environments 194
Biologically Influenced Corrosion 199
Industries and Organisms Involved 200
Tuberculation .. 203
Prevention of MIC ... 204
Atmospheric Corrosion .. 205
Underground/Soil Corrosion .. 211
Factors Affecting Underground/Soil Corrosion 211
Types of Underground/Soil Corrosion 213
Corrosion Control ... 215
Natural and Treated Waters .. 216
Understanding Corrosion in Acids 217
Corrosion by Sulfuric Acid ... 220
Materials Selection Guidelines for Sulfuric Acid 220
Use of Steel in Sulfuric Acid ... 221
Use of Cast Irons in Sulfuric Acid 223
Use of Stainless Steels in Sulfuric Acid 223
Use of Nickel Alloys in Sulfuric Acid 224
Other Metals Used in Sulfuric Acid 225
Nonmetallic Materials Used in Sulfuric Acid 225
Corrosion by Nitric Acid .. 226
Materials Selection Guidelines for Nitric Acid 227
Corrosion by Hydrochloric Acid 227
Materials Selection Guidelines for Hydrochloric Acid 228
Corrosion by Hydrogen Fluoride and Hydrofluoric Acid .. 228
Materials Selection Guidelines for Hydrofluoric Acid 229
Corrosion by Phosphoric Acid 230
Materials Selection Guidelines for Phosphoric Acid 231
Corrosion by Organic Acids .. 231
Acetic Acid ... 232
Other Organic Acids .. 234
Corrosion by Alkalis .. 234
Materials Selection Guidelines for Alkalis 234

CHAPTER 6: Corrosion Characteristics of Structural Materials ... 237
Carbon Steels .. 238
Corrosive Service ... 238
Protection of Steel from Corrosion 239
CHAPTER 7: Corrosion Control by Proper Design301
Design as a Process ..302
The Design Team ..302
Steps in the Design Process ..303
General Considerations in Corrosion-Control Design303
Design Details that Accelerate Corrosion308
Design Solutions for Specific Forms of Corrosion320
Corrosion Allowance ..324
Design Considerations for Using Weathering Steels325
Failures Involving Corrosion of Structural Steel326

CHAPTER 8: Corrosion Control by Materials Selection331
Elements of the Materials Selection Process333
Materials Considerations ..341
Selecting Materials to Avoid or Minimize Corrosion349
General Corrosion ...353
Localized Corrosion ..358

CHAPTER 9: Corrosion Control by Protective Coatings and Inhibitors ...363
Organic Coatings and Linings ..364
Design and Selection of a Coating System365
Surface Preparation ..367
Inspection and Quality Assurance369
Coating and Lining Materials ..371
Environmental, Health, and Safety Considerations379
Metallic Coatings ...382
Electroplated Coatings ...382
Electroless Nickel Plating ..386
Hot-Dip Coatings ...387
Thermal Spray Coatings ...391
Clad Metals ...392
Pack Cementation ..394
Vapor-Deposited Coatings ...395
Surface Modification ..395
Nonmetallic Inorganic Coatings ...396
Concrete and Cementitious Coatings and Linings397
Porcelain Enamels ..398
Conversion Coatings ..399
Aluminum Anodizing ...401
Inhibitors ...401
Types of Inhibitors ...402
Biocides ..404
Application of Inhibitors ..405

CHAPTER 10: Corrosion Control by Cathodic and Anodic Protection ..407
Cathodic Protection ..407
How Cathodic Protection Works408
Preface

Most people are familiar with corrosion in some form or another. Whether it is a rusty nail in a backyard fence, corroded fenders and/or mufflers on our automobiles, or a perforated underground water pipe, it is safe to say that corrosion is all around us. It is costly to prevent or repair, and it is generally not pleasing to look at. In the industrial workplace, corrosion is certainly one of the most common causes of failure of engineered components and structures. The complexities of corrosion phenomena challenge corrosion scientists, chemists, mechanical, civil, and metallurgical engineers, coating specialists, and maintenance and operating personnel.

In order to better understand corrosion, it is important to first examine the basic concepts that influence the corrosion process; hence, the title of this publication—Corrosion: Understanding the Basics. Included in these 12 chapters are practical discussions on the following:

- Thermodynamic and electrochemical principles of corrosion
- Recognition and prevention of various forms of corrosion
- Types of corrosive environments commonly encountered and environmental variables that can increase or decrease corrosion rates
- Corrosion characteristics of metals and alloys and nonmetallic materials
- Methods of corrosion prevention, including design considerations, materials selection, coatings, inhibitors, and cathodic and anodic protection
- Corrosion testing and monitoring
- Techniques for diagnosing corrosion failures
Although the book is primarily intended for professionals who are not corrosion experts, it should also serve as a quick and useful corrosion-control guide for corrosion engineers.

Assisting in the preparation of this book was Larry Korb from Rockwell International. Larry, who is a Fellow of ASM International and longtime member and former chairman of the ASM Handbook Committee, meticulously reviewed each chapter. I have long been in awe of my friend’s exhaustive knowledge of materials and their failure mechanisms (including corrosion), and his keen insight into the editorial process. It is always an honor and a privilege to work with Mr. Korb.

I also wish to acknowledge the contributions of Nalco Chemical Company (Naperville, IL). Many of the photographs illustrating the different modes of corrosion were supplied by Nalco. These originally appeared in two excellent books on failure analysis authored by Nalco engineers Harvey M. Herro (an ASM member) and Robert D. Port. I am indebted to Ms. Connie Szewczyk, a Communications Specialist with Nalco, for supplying these photographs.

Thanks are also extended to Kenneth B. Tator and Alison B. Kaelin from KTA-Tator Inc. (Pittsburgh, PA). Ken supplied an extensive table that reviewed the advantages and limitations of organic coating resins. Alison prepared material on environmental, health, and safety considerations for the coatings industry. Their contributions appear in Chapter 9.

The efforts of the ASM staff are also duly noted. In particular, I would like to thank Scott Henry and Bonnie Sanders from the Publications Department and Eleanor Baldwin and her coworkers from the ASM Library for the help and support throughout the project.

Last, I would be remiss in not acknowledging the fact that several chapters in the book were adapted from the ASM Materials Engineering Institute (MEI) course on corrosion that was prepared by Dr. Joe H. Payer from Case Western Reserve University (Cleveland, OH). Chapters 2 and 3, as well as the description of electrochemical test methods in Chapter 11, were based on Dr. Payer’s work.

Joseph R. Davis
Davis & Associates
Chagrin Falls, Ohio