In this 100th anniversary year of ASM International, it is especially fitting to release ASM Handbook, Volume 4A, Steel Heat Treating Fundamentals and Processes. Since its 1913 origin as the Steel Treaters Club, formed by Detroit blacksmith William Park Woodside, ASM International has grown in scope; yet steel heat treating remains a core subject of the Society. Woodside’s vision and recognition of the need to exchange information on steel heat treating are further recognized by many successful publications including the renowned Metals Handbook.

The ASM Handbook (formerly Metals Handbook) series is being expanded into several volumes on heat treatment. This reflects the roots of ASM International, as well as the Heat Treating Society (An Affiliate Society of ASM International) with its ongoing member contributions in the field of heat treating. ASM International and the Heat Treating Society extend a very special thanks to George E. Totten and Jon Dossett as Volume Editors. Their initiatives and contributions were instrumental in the development of this Volume. We are indebted to them and to the subject editors, authors, and reviewers for this publication.

Thomas E. Clements
President, Heat Treating Society

Gernant E. Maurer
President, ASM International

Thomas S. Passek
Managing Director, ASM International
Policy on Units of Measure

By a resolution of its Board of Trustees, ASM International has adopted the practice of publishing data in both metric and customary U.S. units of measure. In preparing this Handbook, the editors have attempted to present data in metric units based primarily on Système International d’Unités (SI), with secondary mention of the corresponding values in customary U.S. units. The decision to use SI as the primary system of units was based on the aforementioned resolution of the Board of Trustees and the widespread use of metric units throughout the world.

For the most part, numerical engineering data in the text and in tables are presented in SI-based units with the customary U.S. equivalents in parentheses (text) or adjoining columns (tables). For example, pressure, stress, and strength are shown both in SI units, which are pascals (Pa) with a suitable prefix, and in customary U.S. units, which are pounds per square inch (psi). To save space, large values of psi have been converted to kips per square inch (ksi), where 1 ksi = 1000 psi. The metric tonne (kg \times 10^3) has sometimes been shown in megagrams (Mg). Some strictly scientific data are presented in SI units only.

To clarify some illustrations, only one set of units is presented on artwork. References in the accompanying text to data in the illustrations are presented in both SI-based and customary U.S. units. On graphs and charts, grids corresponding to SI-based units usually appear along the left and bottom edges. Where appropriate, corresponding customary U.S. units appear along the top and right edges.

Data pertaining to a specification published by a specification-writing group may be given in only the units used in that specification or in dual units, depending on the nature of the data. For example, the typical yield strength of steel sheet made to a specification written in customary U.S. units would be presented in dual units, but the sheet thickness specified in that specification might be presented only in inches.

Data obtained according to standardized test methods for which the standard recommends a particular system of units are presented in the units of that system. Wherever feasible, equivalent units are also presented. Some statistical data may also be presented in only the original units used in the analysis.

Conversions and rounding have been done in accordance with IEEE/ASTM SI-10, with attention given to the number of significant digits in the original data. For example, an annealing temperature of 1570 °F contains three significant digits. In this case, the equivalent temperature would be given as 855 °C; the exact conversion to 854.44 °C would not be appropriate. For an invariant physical phenomenon that occurs at a precise temperature (such as the melting of pure silver), it would be appropriate to report the temperature as 961.93 °C or 1763.5 °F. In some instances (especially in tables and data compilations), temperature values in °C and °F are alternatives rather than conversions.

The policy of units of measure in this Handbook contains several exceptions to strict conformance to IEEE/ASTM SI-10; in each instance, the exception has been made in an effort to improve the clarity of the Handbook. The most notable exception is the use of g/cm³ rather than kg/m³ as the unit of measure for density (mass per unit volume).

SI practice requires that only one virgule (diagonal) appear in units formed by combination of several basic units. Therefore, all of the units preceding the virgule are in the numerator and all units following the virgule are in the denominator of the expression; no parentheses are required to prevent ambiguity.
Officers and Trustees of ASM International (2012–2013)

Gernant E. Maurer
President
Carpenter Technology Corporation

C. Ravi Ravindran
Vice President
Ryerson University

Christopher C. Berndt
Immediate Past President
Swinburne University of Technology

Thomas Passek
Managing Director
ASM International

Robert Fulton
Treasurer
Hoeganaes Corporation (Retired)

Iver Anderson
Ames Laboratory

Mitchell Dorfman
Sulzer Metco (US), Inc.

Diana Essock
Metamat Inc.

James C. Foley
Los Alamos National Laboratory

David U. Furterer
Pratt & Whitney

Jeffrey A. Hawk
National Energy Technology Laboratory

William J. Lenling
Thermal Spray Technologies Inc.

Vilupanur A. Ravi
California State Polytechnic University

Linda S. Schadler
Rensselaer Polytechnic Institute

Student Board Members
Jennifer L. Breidenich
Georgia Institute of Technology

Gregory A. Vetterick
Drexel University

Blake Whitney
The University of Alabama

Members of the ASM Handbook Committee (2012–2013)

Joseph W. Newkirk (Chair 2012–)
Member 2005–
Missouri University of Science & Technology

George Vander Voort (Vice Chair 2012–)
Member 1997–
Vander Voort Consulting

Craig D. Clauser (Immediate Past Chair Member 2005–)
Clauser Engineering Consulting

Jeffrey A. Hawk (Board Liaison and Member)
Member 1997–
U.S. Department of Energy

Craig V. Darragh (1989–)
The Timken Company (Retired)

Jon L. Dossett (2006–)
Consultant

Alan P. Druschitz (2009–)
Virginia Tech

Donald E. Duvall (2010–)
Engineering Systems Inc.

Gerald S. Frankel (2010–)
Ohio State University

Larry D. Hanke (1994–)
Materials Evaluation and Engineering Inc.

Paul D. Jablonski (2011–)
U.S. Department of Energy

Kent L. Johnson (1999–)
Applied Materials Technology Inc.

Kang N. Lee (2010–)
Rolls Royce Corporation

Brett A. Miller (2011–)
IMR Metallurgical Services

Dale Newbury (2010–)
National Institute of Standards

Toby V. Padfield (2004–)
ZF Sachs Automotive of America

Thomas E. Prucha (2010–)
American Foundry Society

Elwin L. Rooy (2010–)
Elwin Rooy & Associates

Prasan K. Samal (2010–)
North American Hoganas

Roch J. Shipley (2012–)
Professional Analysis Consulting Inc.

Jeffrey S. Smith (2009–)
Material Processing Technology

Jaimie S. Tiley (2012–)
US Air Force Research Lab

George E. Totten (2012–)
G.E. Totten & Associates

Michael K. West (2008–)
South Dakota School of Mines and Technology

Charles V. White (2011–)
Kettering University

Chairs of the ASM Handbook Committee

J.F. Harper (1923–1926) (Member 1923–1926)

W.J. Merten (1927–1930) (Member 1923–1933)

L.B. Case (1931–1933) (Member 1927–1933)

C.H. Herty, Jr. (1934–1936) (Member 1930–1936)

J.P. Gill (1937) (Member 1934–1937)

R.L. Dowdell (1938–1939) (Member 1935–1939)

G.V. Luerssen (1943–1947) (Member 1942–1947)

J.B. Johnson (1948–1951) (Member 1944–1951)

N.E. Promisel (1961) (Member 1954–1963)

D.J. Wright (1964–1965) (Member 1959–1967)

W.L. Mankins (1994–1997) (Member 1989–)

C.V. Darragh (1999–2002) (Member 1989–)

Kent L. Johnson (2008–2010) (Member 1999–)

Craig D. Clauser (2010–2012) (Member 2005–)

Joseph W. Newkirk (2012–) (Member 2005–)
The ASM Handbook, Volume 4A, Steel Heat Treating Fundamentals and Processes, represents the first of several Volumes to be published on heat treating. As indicated in the title, Volume 4A focuses on the fundamental aspects of steel heat treating and the many processes of steel heat treating. The Volume 4B, planned for future publication, will cover the heat treating and behavior of the many types of steels and cast irons.

As with the last edition of this Volume, the Volume Editors recognized that the researchers, engineers, technicians and students that will use this Volume 4A have different needs with regard to their level of understanding. Articles on the fundamentals provide in-depth background on the scientific principles associated with steel heat treatment, while articles on the various heat treating processes take a more practical approach. The Volume Editors have also tried to present a comprehensive reference that can be of use to the diverse heat treating community.

All sections of this Volume have been reviewed to be sure that they reflect the current status of the technology. Many sections have been expanded, such as the sections on fundamentals and processing methods for carburizing and nitriding of steels. Coverage on the hardenability of steels is expanded, and several new articles have been added on quenching fundamentals and processes. Updates have been done as appropriate, and efforts were taken to include charts, examples, and reference information from the substantive archives of the Society—and its predecessors—the American Society for Metals, and the American Society for Steel Treating. This Volume is especially fitting in the 100th anniversary year of ASM International.

We wish to thank our many colleagues who served as editors and authors of the individual articles. In particular, the editors also are indebted to the Heat Treating Society (An Affiliate Society of ASM International) and its members, which give the foundation for this publication and other events, conferences, and educational programs. This Volume would not have been possible without their efforts.

Jon Dossett
George Totten
List of Contributors and Reviewers

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.B. Ahmed</td>
<td>McMaster University</td>
</tr>
<tr>
<td>Toru (Tohru) Arai</td>
<td>Consultant</td>
</tr>
<tr>
<td>Michael A. Aronov</td>
<td>IQ Technologies, Inc</td>
</tr>
<tr>
<td>Manfred Behnke</td>
<td>NUSSLE GmbH & Co.KG</td>
</tr>
<tr>
<td>William J. Bernard, III</td>
<td>Surface Combustion, Inc.</td>
</tr>
<tr>
<td>Volker Block</td>
<td>Saarstahl AG, Germany</td>
</tr>
<tr>
<td>Rainer Braun</td>
<td>NUSSLE GmbH & Co.KG</td>
</tr>
<tr>
<td>Anja Buchwalder</td>
<td>Technical University Bergakademie Freiberg</td>
</tr>
<tr>
<td>Eckhard H. Burgdorf</td>
<td>NUSSLE GmbH & Co.KG</td>
</tr>
<tr>
<td>Lauralice de C. F. Canale</td>
<td>University of São Paulo</td>
</tr>
<tr>
<td>Charles Caristan</td>
<td>Airliquide</td>
</tr>
<tr>
<td>Madhu Chatterjee</td>
<td>Bodycote</td>
</tr>
<tr>
<td>Brigitte Clausen</td>
<td>Stiftung Institut für Werkstofftechnik, Bremen</td>
</tr>
<tr>
<td>Rafael Colás</td>
<td>Universidad Autónoma De Nuevo León</td>
</tr>
<tr>
<td>James Conybear</td>
<td>Metlab</td>
</tr>
<tr>
<td>Narendra B. Dahotre</td>
<td>University of North Texas</td>
</tr>
<tr>
<td>Craig Darragh</td>
<td>The Timken Company (Retired)</td>
</tr>
<tr>
<td>S. Dilip</td>
<td>Fluidtherm</td>
</tr>
<tr>
<td>Jon Dossett</td>
<td>Consultant</td>
</tr>
<tr>
<td>Edward (Derry) Doyle</td>
<td>RMIT University</td>
</tr>
<tr>
<td>Kevin M. Duffy</td>
<td>The Duffy Co.</td>
</tr>
<tr>
<td>Bernd Edenhofer</td>
<td>Ipsen Industries International GmbH (retired)</td>
</tr>
<tr>
<td>Jan Elwart</td>
<td>Bodycote European Holdings GmbH</td>
</tr>
<tr>
<td>Imre Felde</td>
<td>University of Óbuda</td>
</tr>
<tr>
<td>Allen J. Fuller</td>
<td>Jr. Amsted Rail Company, Inc.</td>
</tr>
<tr>
<td>Kiyoshi Funatani</td>
<td>IMST Institute (Consultant)</td>
</tr>
<tr>
<td>Weimin Gao</td>
<td>Institute for Frontier Materials, Deakin University</td>
</tr>
<tr>
<td>Winfried Gräfen</td>
<td>Hanomag Härtil Gommern Lohnhärterei GmbH, Germany</td>
</tr>
<tr>
<td>Robert J. Gaster</td>
<td>Deere & Company</td>
</tr>
<tr>
<td>Jianfeng Gu</td>
<td>Shanghai Jiao Tong University</td>
</tr>
<tr>
<td>David Guisbert</td>
<td>QA Metallurgical Services LLC</td>
</tr>
<tr>
<td>M.S. Hamed</td>
<td>McMaster University</td>
</tr>
<tr>
<td>Larry Hanke</td>
<td>Materials Evaluation and Engineering, Inc.</td>
</tr>
<tr>
<td>Volker Heuer</td>
<td>ALD Vacuum Technologies GmbH</td>
</tr>
<tr>
<td>Peter Hodgson</td>
<td>Institute for Frontier Materials, Deakin University</td>
</tr>
<tr>
<td>Franz Hoffmann</td>
<td>IWT Bremen</td>
</tr>
<tr>
<td>Ralph Hunger</td>
<td>Bodycote European Holdings GmbH</td>
</tr>
<tr>
<td>Peter Hushek</td>
<td>Phoenix Heat Treating</td>
</tr>
<tr>
<td>Michael Ives</td>
<td>Park Metallurgical Corporation</td>
</tr>
<tr>
<td>Scott Johnston</td>
<td>Caterpillar</td>
</tr>
<tr>
<td>J. Kalucki</td>
<td>Nitrex Metal Inc</td>
</tr>
<tr>
<td>Guldem Kartal</td>
<td>Istanbul Technical University</td>
</tr>
<tr>
<td>Gary D. Keil</td>
<td>Caterpillar Inc</td>
</tr>
<tr>
<td>John R. Keough</td>
<td>Applied Process Inc</td>
</tr>
<tr>
<td>Matthew T. Kiser</td>
<td>Caterpillar Inc</td>
</tr>
<tr>
<td>Nikolai Kobasko</td>
<td>IQ Technologies, Inc</td>
</tr>
<tr>
<td>Lingxue Kong</td>
<td>Institute for Frontier Materials, Deakin University</td>
</tr>
<tr>
<td>Maciej Korecki</td>
<td>SECO/WARWICK Corporation</td>
</tr>
<tr>
<td>Jim Laird</td>
<td>Consultant</td>
</tr>
<tr>
<td>B. Liščić</td>
<td>University of Zagreb</td>
</tr>
<tr>
<td>Thomas Luebben</td>
<td>IWT Bremen</td>
</tr>
<tr>
<td>Xinmin Luo</td>
<td>Jiangsu University</td>
</tr>
<tr>
<td>D. Scott MacKenzie</td>
<td>Houghton International</td>
</tr>
<tr>
<td>Jim Malloy</td>
<td>Kolene Corp.</td>
</tr>
<tr>
<td>Mohammed Maniruzzaman</td>
<td>Caterpillar Inc</td>
</tr>
<tr>
<td>Bozidar Matijević</td>
<td>Quenching Research Centre</td>
</tr>
<tr>
<td>Dan McCurdy</td>
<td>Bodycote</td>
</tr>
<tr>
<td>L.L. Meekisho</td>
<td>Portland State University</td>
</tr>
<tr>
<td>E.J. Mittemeijer</td>
<td>Max Planck Institute for Intelligent Systems (formerly Max Planck Institute for Metals Research)</td>
</tr>
<tr>
<td>B. Hernández-Morales</td>
<td>Universidad Nacional Autónoma de México</td>
</tr>
<tr>
<td>Aaron Muhlenkamp</td>
<td>The Timken Company</td>
</tr>
</tbody>
</table>
Fahrettin Ozturk
Nigde University

George Pantazopoulos
ELKEME Hellenic Research Centre
for Metals S.A.

Renata Neves Penha
Universidade de Sao Paulo

Joseph A. Powell
IQ Technologies, Inc

Narayan Prabhu
National Institute of Technology, India

Mark Ratliff
Avion Manufacturing

Arthur Reardon
The Gleason Works

Thomas Risbeck
The Timken Company

Barbara Rivolta
Politecnico di Milano (Polytechnic Institute Milan)

Olga K. Rowan
Caterpillar Inc.

Valery Rudnev
Inductosheat Incorporated

Satyam S. Sahay
John Deere Asia Technology Innovation Center

S. Santhanakrishnan
Indian Institute of Technology Madras

Peter Schiefer
Ford-Werke GmbH

Michael J. Schneider
The Timken Company

Juyan Shi
Taiyuan University of Technology

Mark Sirrine
Flame Treating Systems

Sasa Singer
University of Zagreb

Richard D. Sisson Jr.
Worcester Polytechnic Institute

Marcel Somers
Technical University of Denmark

John G. Speer
Advanced Steel Processing and Products Research Center, Colorado School of Mines

Heinz-Joachim Spies
Technical University Bergakademie Freiberg

Bill Stofey
National Polymer Laboratories and Development Co.

George E. Totten
Portland State University

Eva Troell
Swerea IVF AB

Andre Tschiptschin
Universidade de Sao Paulo

David Van Aken
Missouri State Univ.

Jan Vatavuk
Presbyterian University Mackenzie

Li Wang
Automotive Steel Research Institute, R&D Center

Dale Weires
Boeing

K.M. Winter
Process-Electronic GmbH

Roger Wright
Rensselaer Polytechnic Institute (retired)

Rolf Zenker
Technical University Bergakademie Freiberg

Craig Zimmerman
Bluewater Thermal Solutions

Tim Zwirlein
Caterpillar
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Steel Heat Treating</td>
<td>1</td>
</tr>
<tr>
<td>Introduction to Steel Heat Treatment</td>
<td>3</td>
</tr>
<tr>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>Constitution of Iron</td>
<td>4</td>
</tr>
<tr>
<td>Phases of Heat Treating Steels</td>
<td>7</td>
</tr>
<tr>
<td>Transformation Diagrams</td>
<td>16</td>
</tr>
<tr>
<td>Isothermal Transformation Diagrams</td>
<td>16</td>
</tr>
<tr>
<td>Continuous Cooling Transformation Diagrams</td>
<td>20</td>
</tr>
<tr>
<td>Thermal and Residual Stresses</td>
<td>21</td>
</tr>
<tr>
<td>Hardness and Hardenability of Steels</td>
<td>26</td>
</tr>
<tr>
<td>Introduction</td>
<td>26</td>
</tr>
<tr>
<td>Quench Severity in Hardenability Evaluation</td>
<td>30</td>
</tr>
<tr>
<td>Ideal Critical Diameter</td>
<td>33</td>
</tr>
<tr>
<td>Hardenability Correlation Curves</td>
<td>33</td>
</tr>
<tr>
<td>Other Hardenability Tests</td>
<td>35</td>
</tr>
<tr>
<td>Jominy Equivalence Charts</td>
<td>40</td>
</tr>
<tr>
<td>Determining Hardenability Requirements</td>
<td>41</td>
</tr>
<tr>
<td>Factors Affecting Hardenability</td>
<td>45</td>
</tr>
<tr>
<td>Variability in Jominy Data Sets</td>
<td>46</td>
</tr>
<tr>
<td>Calculation of Steel Hardenability</td>
<td>47</td>
</tr>
<tr>
<td>Steel Selection for Hardenability</td>
<td>48</td>
</tr>
<tr>
<td>Hardenability Limits and H-Steels</td>
<td>50</td>
</tr>
<tr>
<td>H-Steels Classified by Hardness at End-Quench Positions</td>
<td>51</td>
</tr>
<tr>
<td>Hardenability Calculation of Carbon and Low-Alloy Steels</td>
<td>60</td>
</tr>
<tr>
<td>Introduction</td>
<td>60</td>
</tr>
<tr>
<td>Principles of Computational Hardenability</td>
<td>60</td>
</tr>
<tr>
<td>Modeling Approaches to Hardenability of Steels</td>
<td>62</td>
</tr>
<tr>
<td>Caterpillar Hardenability Calculator (1E0024)</td>
<td>64</td>
</tr>
<tr>
<td>Estimation of Jominy Curves from Compositions</td>
<td>69</td>
</tr>
<tr>
<td>Calculation Example for 8645 Steel</td>
<td>70</td>
</tr>
<tr>
<td>Calculation Example for Boron Steel (86B45)</td>
<td>71</td>
</tr>
<tr>
<td>Regression Analysis of Hardenability in Europe</td>
<td>71</td>
</tr>
<tr>
<td>Calculation of Hardenability in High-Carbon Steels</td>
<td>80</td>
</tr>
<tr>
<td>Background</td>
<td>80</td>
</tr>
<tr>
<td>Derivation of Multiplying Factors</td>
<td>83</td>
</tr>
<tr>
<td>Multiplying Factors</td>
<td>83</td>
</tr>
<tr>
<td>Use of the Multiplying Factors</td>
<td>86</td>
</tr>
<tr>
<td>Limitations of the Multiplying Factors</td>
<td>87</td>
</tr>
<tr>
<td>Steel Quenching Fundamentals and Processes</td>
<td>89</td>
</tr>
<tr>
<td>Quenching of Steel</td>
<td>91</td>
</tr>
<tr>
<td>G.E. Totten, J.L. Dossett, and N.I. Kobasko</td>
<td>91</td>
</tr>
<tr>
<td>Mechanism of Quenching</td>
<td>91</td>
</tr>
<tr>
<td>Quenching Process Variables</td>
<td>94</td>
</tr>
<tr>
<td>Metallurgical Aspects</td>
<td>95</td>
</tr>
<tr>
<td>Quench Severity</td>
<td>100</td>
</tr>
<tr>
<td>Tests and Evaluation of Quenching Media</td>
<td>103</td>
</tr>
<tr>
<td>Cooling Curve Test</td>
<td>104</td>
</tr>
<tr>
<td>Heat-Transfer Coefficient Calculations</td>
<td>110</td>
</tr>
<tr>
<td>Common Quenching Process Variables</td>
<td>113</td>
</tr>
<tr>
<td>Quenching Systems</td>
<td>118</td>
</tr>
<tr>
<td>Water- and Air-Quenching Media</td>
<td>122</td>
</tr>
<tr>
<td>Aqueous Salt (Brine) Solutions</td>
<td>122</td>
</tr>
<tr>
<td>Molten Metal Quenchants</td>
<td>125</td>
</tr>
<tr>
<td>Molten Salt and Hot Oil Quenchants</td>
<td>126</td>
</tr>
<tr>
<td>Oil Quenchants</td>
<td>129</td>
</tr>
<tr>
<td>Quench Oil Bath Maintenance</td>
<td>139</td>
</tr>
<tr>
<td>Quench Oil System Monitoring</td>
<td>144</td>
</tr>
<tr>
<td>Safe Use of Petroleum Quench Oils</td>
<td>144</td>
</tr>
<tr>
<td>Polymer Quenchants</td>
<td>146</td>
</tr>
<tr>
<td>Fixtures</td>
<td>151</td>
</tr>
<tr>
<td>Characterization of Heat Transfer during Quenching</td>
<td>158</td>
</tr>
<tr>
<td>B. Hernández-Morales</td>
<td>159</td>
</tr>
<tr>
<td>Heat-Transfer Basics</td>
<td>162</td>
</tr>
<tr>
<td>Heat Generated by Microstructural Evolution</td>
<td>179</td>
</tr>
<tr>
<td>Liquid Quenching Heat Transfer</td>
<td>162</td>
</tr>
<tr>
<td>Active Heat-Transfer Boundary Condition</td>
<td>167</td>
</tr>
<tr>
<td>Large Probes for Characterization of Industrial Quenching Processes</td>
<td>176</td>
</tr>
<tr>
<td>B. Lisčić and George E. Totten</td>
<td>176</td>
</tr>
<tr>
<td>Heat-Transfer Basics</td>
<td>179</td>
</tr>
<tr>
<td>Critical Heat-Flux Densities of Liquid Quenchants</td>
<td>179</td>
</tr>
<tr>
<td>Temperature Gradient Method for Evaluation of Cooling Intensity in Workshop Conditions</td>
<td>180</td>
</tr>
<tr>
<td>The Lisčić/Petrof-Probe</td>
<td>181</td>
</tr>
<tr>
<td>Prediction of Hardness Distribution after Quenching Axially</td>
<td>183</td>
</tr>
<tr>
<td>Symmetrical Workpieces of Any Shape</td>
<td>183</td>
</tr>
<tr>
<td>Numerical Solution of the Inverse Heat-Conduction Problem</td>
<td>184</td>
</tr>
<tr>
<td>Smoothing of Measured Temperatures</td>
<td>188</td>
</tr>
<tr>
<td>Simulation Examples</td>
<td>189</td>
</tr>
<tr>
<td>Quench Process Sensors</td>
<td>192</td>
</tr>
<tr>
<td>G.E. Totten</td>
<td>192</td>
</tr>
<tr>
<td>Fluid Flow in Quenching</td>
<td>192</td>
</tr>
<tr>
<td>Fluid Flow Measurement</td>
<td>192</td>
</tr>
<tr>
<td>Intensive Quenching of Steel Parts</td>
<td>198</td>
</tr>
<tr>
<td>Michael A. Aronov, Nikolai Kobasko, Joseph A. Powell, and George E. Totten</td>
<td>198</td>
</tr>
<tr>
<td>Mechanical Properties and Cooling Rate of Quenching</td>
<td>198</td>
</tr>
<tr>
<td>Intensive Quenching and Other Quench Methods</td>
<td>199</td>
</tr>
<tr>
<td>Heat Transfer during Quenching</td>
<td>200</td>
</tr>
<tr>
<td>Batch Intensive Quenching (IQ-2)</td>
<td>201</td>
</tr>
<tr>
<td>Single-Part IQ Process (IQ-3)</td>
<td>203</td>
</tr>
<tr>
<td>Improvement of Steel Microstructure, Mechanical Properties, and Stress Conditions</td>
<td>204</td>
</tr>
<tr>
<td>IQ Process and Part Distortion</td>
<td>207</td>
</tr>
<tr>
<td>Design of Production IQ Systems</td>
<td>207</td>
</tr>
<tr>
<td>Practical Applications of IQ Processes</td>
<td>210</td>
</tr>
<tr>
<td>Inverse Hardening</td>
<td>213</td>
</tr>
<tr>
<td>B. Lisčić and George E. Totten</td>
<td>213</td>
</tr>
<tr>
<td>Heat-Extraction Dynamics</td>
<td>213</td>
</tr>
<tr>
<td>Metallurgical Aspects</td>
<td>215</td>
</tr>
<tr>
<td>Quenchants Enabling Controllable Delayed Quenching</td>
<td>218</td>
</tr>
<tr>
<td>Properties</td>
<td>218</td>
</tr>
<tr>
<td>Summary</td>
<td>219</td>
</tr>
<tr>
<td>Gas Quenching</td>
<td>221</td>
</tr>
<tr>
<td>Volker Heuer</td>
<td>221</td>
</tr>
<tr>
<td>Introduction</td>
<td>221</td>
</tr>
</tbody>
</table>
Case Hardening of Steels .. 387

Introduction to Surface Hardening of Steels

Michael J. Schneider and Madhu S. Chatterjee 389

Diffusion Methods of Surface Hardening 389

Carburizing and Carbonitriding 390

Nitriding and Nitrocarburizing 393

Applied Energy Methods . .. 395

Other Methods ... 396

Process Selection .. 397

Stop-Off Technologies for Heat Treatment

Eckhard H. Burgdorf, Manfred Behnke, Rainer Braun, and Kevin M. Duffy 399

Mechanical Masking .. 399

Copper Plating ... 399

Stop-off Paints .. 400

Methods of Measuring Case Depth in Steels

William J. Bernard III ... 405

Introduction ... 405

Measurement Specifications 405

Chemical Method .. 406

Mechanical Methods ... 407

Visual Methods .. 411

Nondestructive Methods ... 413

Applied-Energy Case Hardening of Steels 417

Flame Hardening of Steels

B. Rivolta .. 419

Methods of Flame Hardening 419

Fuel Gases ... 421

Burners and Related Equipment 423

Operating Procedures and Control 426

Preheating ... 427

Depth and Pattern of Hardness 427

Maintenance of Equipment 428

Preventive Maintenance ... 431

Safety Precautions .. 431

Quenching Methods and Equipment 431

Quenching Media .. 432

Flame-Hardening Problems and Their Causes 432

Tempering of Flame-Hardened Parts 433

Surface Conditions ... 433

Dimensional Control ... 433

Selection of Process ... 433

Selection of Material .. 435

Flame Annealing .. 436

Induction Surface Hardening of Steels

Valery Radnev and Jon Dossett 438

Principles of Induction Heating 438

High-Temperature Electrical, Magnetic, and Thermal Properties ... 440

Eddy-Current Distribution 443

Induction Hardening and Tempering 446

General Equipment and Process Factors 451

Surface-Hardening Parameters 456

Application Tips and Troubleshooting 459

Electron Beam Surface Hardening

Rolf Zenker and Anja Buchwalder 462

Electron Beam Generation and Interaction with Material. 462

Processing Techniques ... 464

Electron Beam Hardening Technologies 466

Electron Beam Facilitites and Manufacturing Systems with Integrated EB Facilities 469

Applications ... 471

Laser Surface Hardening

Soundarapandian Santhanakrishnan and Narendra B. Dahotre 476

Conventional Surface-Hardening Techniques 476

Laser Surface Hardening .. 478

Absorptivity ... 479

Laser Scanning Technology 480

Laser Annealing ... 481

Laser Cladding ... 481

Laser Shock Peening ... 483

Laser Heat Treatment ... 483

Thermokinetic Phase Transformations 485

Challenges in Obtaining the Specified Hardness 487

Influence of Cooling Rate .. 488

Effect of Processing Parameters on Temperature, Microstructure, and Case Depth Hardness 488

Laser Surface Hardening of Nonferrous Alloys 491

Carburizing and Carbonitriding of Steels 503

Introduction to Carburizing and Carbonitriding

Allen J. Fuller, Jr .. 505

Introduction ... 505

History ... 505

General Process Description 506

How to Carburize .. 509

Basic Carburizing Reactions 510

Advantages and Limitations 512

Carburizing Steels .. 514

Quality Assurance ... 514

Possible Complications .. 516

Evaluation of Carbon Control in Carburized Parts

Gary D. Keil and Olga K. Rowan 522

Hardness Testing ... 522

Microscopic Examination 522

Analysis of Consecutive Cuts 523

Analysis of Shim Stock .. 524

Analysis of Rolled Wire .. 526

Spectrographic Analysis ... 526

Electromagnetic Testing ... 527

Gas Carburizing

Olga K. Rowan and Gary D. Keil 528

Thermodynamics and Kinetics 528

Carbon Sources and Atmosphere Types 532

Carbon-Transfer Mechanism 535

Carburizing Modeling and Case Depth Prediction 536

Carburizing Equipment .. 538

Furnace Temperature and Atmosphere Control 540

Carburizing Cycle Development 544

Process Planning .. 547

Dimensional Control ... 555

Case Depth Evaluation ... 556

Pack Carburizing .. 560

Introduction ... 560

Advantages and Disadvantages 560

Carburizing Medium and Compounds 561

Process Control .. 562

Furnaces for Pack Carburizing 562
Carburizing Containers .. 563
Packing ... 564
Liquid Carburizing and Cyaniding of Steels
Jon Dossett .. 565
Cyanide-Containing Liquid Carburizing Baths 565
Cyaniding (Liquid Carburizing) 566
Noncyanide Liquid Carburizing 567
Carbon Gradients .. 571
Hardness Gradients ... 571
Process Control ... 571
Control of Case Depth .. 572
Dimensional Changes ... 574
Quenching Media ... 574
Salt Removal (Washing) ... 575
Typical Applications ... 576
Precautions in the Use of Cyanide Salts 577
Disposal of Cyanide Wastes 578
Low-Pressure Carburizing
Volker Heuer .. 581
Process ... 581
Physical Principles ... 582
Equipment for Low-Pressure Carburizing 583
Carburizing Strategies .. 584
Prediction of Carbon Profiles 585
Applications ... 586
Quality Control of the LPC Process in Mass Production 587
High-Temperature LPC ... 587
Plasma (Ion) Nitriding and Nitrocarburizing of Steels
B. J. Miller, S. L. Aronson, and A. D. Young 591
Characteristics of Boride Layers 609
Nontoxic Salt Bath Nitrocarburizing Treatments 611
Nitrification .. 612
Nitriding .. 613
Low-Temperature Nitriding and Nitrocarburizing 613
Nitrified Steels ... 614
Epilogue ... 615
Liquid Nitriding of Steels
D. George Pantazopoulos .. 680
Liquid Nitriding Systems .. 681
Nitrified Steels ... 682
Nitriding .. 683
Aerated Bath Nitriding .. 684
Case Depth and Case Hardness 685
Operating Procedures ... 686
Selecting Equipment .. 687
Safety Precautions .. 688
Green Gas Nitriding ... 689
Liquid Nitriding ... 690
Liquid Nitriding Systems .. 691
Nitrified Steels ... 692
Low-Temperature Nitriding and Nitrocarburizing 693
Nitrification .. 694
Nitriding .. 695
Process Control ... 696
Case Structures and Formation 697
Workpiece Factors ... 698
Pack Nitriding .. 699
Nitrification .. 700
Pack Nitriding Applications 701
Diffusion Coatings ... 705
Pack Cementation Processes 707
Aluminizing .. 708
Siliconizing .. 709
Chromizing .. 710
Boriding (Boronizing) of Metals
Craig Zimmerman ... 709
Characteristic Features of Boride Layers 709
Boriding of Ferrous Materials 711
Boriding of Nonferrous Materials 712
Nitrinding and Nitrocarburizing of Steels 617
Fundamentals of Nitrinding and Nitrocarburizing
E.J. Mittemeijer .. 619
Introduction ... 619
1. Advent of Nitrinding .. 619
3. The Iron-Nitrogen Phase Diagram 621
4. Nitrinating Potential and the Lehrer Diagram 622
5. Controlled Nitrinding .. 623
6. Carburizing Potential and Controlled Carburizing 624
7. Controlled Nitrocarburizing 625
8. Local Equilibria and Stationary States 626
9. Microstructural Development of the Compound Layer 628
11. Microstructural Development of the Diffusion Zone 635
12. Kinetics of Diffusion-Zone Growth 639
Epilogue ... 641