Great care is taken in the compilation and production of this book, but it should be made clear that NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE GIVEN IN CONNECTION WITH THIS PUBLICATION. Although this information is believed to be accurate by ASM, ASM cannot guarantee that favorable results will be obtained from the use of this publication alone. This publication is intended for use by persons having technical skill, at their sole discretion and risk. Since the conditions of product or material use are outside of ASM’s control, ASM assumes no liability or obligation in connection with any use of this information. No claim of any kind, whether as to products or information in this publication, and whether or not based on negligence, shall be greater in amount than the purchase price of this product or publication in respect of which damages are claimed. THE REMEDY HEREBY PROVIDED SHALL BE THE EXCLUSIVE AND SOLE REMEDY OF BUYER, AND IN NO EVENT SHALL EITHER PARTY BE LIABLE FOR SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES WHETHER OR NOT CAUSED BY OR RESULTING FROM THE NEGLIGENCE OF SUCH PARTY. As with any material, evaluation of the material under end-use conditions prior to specification is essential. Therefore, specific testing under actual conditions is recommended.

Nothing contained in this book shall be construed as a grant of any right of manufacture, sale, use, or reproduction, in connection with any method, process, apparatus, product, composition, or system, whether or not covered by letters patent, copyright, or trademark, and nothing contained in this book shall be construed as a defense against any alleged infringement of letters patent, copyright, or trademark, or as a defense against liability for such infringement.

Comments, criticisms, and suggestions are invited, and should be forwarded to ASM International.

ASM International staff who worked on this project include Steve Lampman, Acquisitions Editor; Bonnie Sanders, Manager of Production; Carol Terman, Jill Kinson, and Nancy Hrivnak, Production Editors; and Scott Henry, Assistant Director of Reference Publications.

Library of Congress Cataloging-in-Publication Data

Handbook of workability and process design / edited by George E. Dieter, Howard A. Kuhn, Lee Semiatin.

p. cm.
Updated and expanded ed. of: Workability testing techniques. 1984.
ISBN 0-87170-778-0

TA460.H3195 2003
671.3—dc21
2003052197

ISBN: 0-87170-778-0
SAN: 204-7586

ASM International®
Materials Park, OH 44073-0002
www.asminternational.org

Printed in the United States of America

Multiple copy reprints of individual articles are available from ASM International, Technical Department.
Contents

Preface vi

Introduction .. 1

Chapter 1 Workability and Process Design—An Introduction 3
Howard A. Kuhn, George E. Dieter, and S.L. Semiatin

Workability Problems 4
Process Design and Modeling 10
Approximate and Closed Form Solutions 14
Numerical Techniques in Process Modeling ... 14
Microstructural Modeling 17
Processing Maps 17
Summary 19

Chapter 2 Bulk Workability of Metals 22
George E. Dieter

Stress, Strain, and Stress-Strain Curves 22
Multiaxial Stress States 26
Material Factors Affecting Workability 27
Process Variables Determining Workability ... 30
Workability Fracture Criteria 32
Process Maps 32
Summary 34

Chapter 3 Evolution of Microstructure during Hot Working 35
S.L. Semiatin

Mechanisms of Microstructure Evolution 35
Phenomenology of Plastic Flow and Microstructure Evolution ... 37
Mechanistic Models for Microstructure Evolution 39

Workability Testing Techniques 45

Chapter 4 Bulk Workability Testing 47
George E. Dieter

Primary Tests 47
Specialized Tests 51
Workability Analysis Using the Fracture Limit Line 54

Chapter 5 Cold Upset Testing 57
Howard A. Kuhn

Upset Test Technique 57
Test Characteristics 58
Fracture Limits 59
Workability Diagram 60
Conclusions 60

Chapter 6 Hot Compression Testing 61
George E. Dieter

Cylindrical Compression Test 61
Ring Compression Test 64
Plane-Strain Compression Test 65
Conclusions 66

Chapter 7 Hot-Tension Testing 68
P.D. Nicolaou, R.E. Bailey, and S.L. Semiatin

Equipment and Testing Procedures 68
Hot Ductility and Strength Data from the Gleeble Test 72
Isothermal Hot-Tension Test Data 74
Modeling of the Isothermal Hot-Tension Test 78
Cavitation During Hot-Tension Testing 80

Chapter 8 Torsion Testing to Assess Bulk Workability 86
S.L. Semiatin and J.J. Jonas

Material Considerations 87
Specimen Design 87
Torsion Equipment 89
Flow-Stress Data 93
Interpretation of Torsion Fracture Data 103
Measuring Flow-Localization-Controlled Workability 108
Microstructure Development During Deformation Processing 112
Processing History Effects 116

Chapter 9 Hot Working Simulation by Hot Torsion Testing 122
Joseph R. Pickens

Types of Hot Working Simulation Tests 122
Hot Torsion Testing Practice 123
Hot Torsion Application Examples 124

Chapter 10 Thermomechanical Testing 128
Stéphane Guillard and Kouushk Ray

Typical Types of Problems 128
Thermophysical Properties Tests 129
Designing Thermomechanical Tests 131
Obtaining, Analyzing, and Using Thermomechanical Testing Results 131
Examples of Thermomechanical Testing: Design, Experiment, and Analysis 132

Process Design and Workability 137

Chapter 11 Design for Deformation Processes 139

Why Use Deformation Processes? 139
Characteristics of Manufacturing Processes 140
Categories of Deformation Processes 144
Cold Working 147
Hot Working 148
Forgeability of Alloys 149
Summary 170

Chapter 12 Workability Theory and Application in Bulk Forming Processes 172
Howard A. Kuhn

Stress and Strain States 172
Empirical Criterion of Fracture 173
Theoretical Fracture Models and Criteria 177
Applications 179
Table 6 C and m values for the flow stress-strain rate relation, $\sigma = C(\dot{\varepsilon})^m$, of various nonferrous alloys 384
Table 7 Average flow stress values determined in the uniform compression test that might be used in practical load-predicting applications 385

Table 8 Average flow stress values obtained from ring compression tests suggested for use in practical applications. 385

Abbreviations and Symbols ... 386
Index ... 389
Preface

Workability is a vital aspect of the processing of materials, having roots in both material behavior and process design. Whether a part can be produced by plastic deformation without cracking or the generation of other defects is of important economic consequence. Because of the complex nature of the workability of metals, there is no single test that can be used to evaluate it. Several laboratory tests have been developed that are useful in screening materials for workability, but in other instances, very specialized tests that are specific to the process are commonly used.

The Handbook of Workability and Process Design is an update and expansion in scope of Workability Testing Techniques that was published by the American Society for Metals in 1984. This original work was developed by the Metal Working Group of ASM to provide a readily available description and interpretation of the most common workability tests in the deformation processing of metals. Prior to its introduction, this information was widely scattered in the literature. The nearly 20 year life of this book bears witness to the value and acceptance of the concept behind this project.

At the time of the formulation of Workability Testing Techniques, the use of finite element methods (FEMs) for the modeling and simulation of metal deformation processes was in its infancy. In the ensuing 20 years, the use of FEM analysis for process design has become rather commonplace. Therefore, in contemplating this revision and update, the editors decided to expand the scope to incorporate process design, especially as influenced by FEM analysis. By doing this, the Handbook of Workability and Process Design takes on a more mathematical flavor than its predecessor while still retaining a balance with its original intent. Thus, the chapters that describe the various workability tests continue true to the original intent of providing practical workability testing techniques that can be used by the inexperienced practitioner.

We appreciate the contributions from the many experts who have contributed to this Handbook. Also, special thanks go to Steve Lampman, of the ASM staff, who not only provided editorial guidance throughout this project but also expertly provided the chapters that describe the basics of forging, rolling, extrusion, and wire-drawing.

George E. Dieter
College Park, MD
May 1, 2003

Howard A. Kuhn
Johnstown, PA
May 1, 2003

S. Lee Semiatin
Dayton, OH
May 1, 2003