Heat Treatment of Gears

A Practical Guide for Engineers

A.K. Rakhit
No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the written permission of the copyright owner.

First printing, December 2000

Great care is taken in the compilation and production of this book, but it should be made clear that NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE GIVEN IN CONNECTION WITH THIS PUBLICATION. Although this information is believed to be accurate by ASM, ASM cannot guarantee that favorable results will be obtained from the use of this publication alone. This publication is intended for use by persons having technical skill, at their sole discretion and risk. Since the conditions of product or material use are outside of ASM’s control, ASM assumes no liability or obligation in connection with any use of this information. No claim of any kind, whether as to products or information in this publication, and whether or not based on negligence, shall be greater in amount than the purchase price of this product or publication in respect of which damages are claimed. THE REMEDY HEREBY PROVIDED SHALL BE THE EXCLUSIVE AND SOLE REMEDY OF BUYER, AND IN NO EVENT SHALL EITHER PARTY BE LIABLE FOR SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES WHETHER OR NOT CAUSED BY OR RESULTING FROM THE NEGLIGENCE OF SUCH PARTY. As with any material, evaluation of the material under end-use conditions prior to specification is essential. Therefore, specific testing under actual conditions is recommended.

Nothing contained in this book shall be construed as a grant of any right of manufacture, sale, use, or reproduction, in connection with any method, process, apparatus, product, composition, or system, whether or not covered by letters patent, copyright, or trademark, and nothing contained in this book shall be construed as a defense against any alleged infringement of letters patent, copyright, or trademark, or as a defense against liability for such infringement.

Comments, criticisms, and suggestions are invited, and should be forwarded to ASM International.

ASM International staff who worked on this project included Veronica Flint, Manager, Book Acquisitions; Bonnie Sanders, Manager, Production; Carol Terman, Copy Editor; Kathy Dragolich, Production Supervisor; and Scott Henry, Assistant Director, Reference Publications.

Library of Congress Cataloging-in-Publication Data

Rakhit, A.K.
p. cm.
Includes bibliographical references and index.
TJ184.R35 2000 621.8'33—dc21 00-059341

ISBN: 0-87170-694-6
SAN: 204-7586

ASM International®
Materials Park, OH 44073-0002
www.asminternational.org

Printed in the United States of America
This book is dedicated to my parents, Mr. and Mrs. Upendra C. Rakhit; my wife, Ratna, for her understanding and inspiration; and my son, Amit, and daughter, Roma, for their love and support.

Sunniva R. Collins (Chair)
Swagelok/Nupro Company

Eugen Abramovic
Bombardier Aerospace (Canadair)

A.S. Brar
Seagate Technology Inc.

Ngai Mun Chow
Det Norske Veritas Pte Ltd.

Seetharama C. Deevi
Philip Morris, USA

Bradley J. Diak
Queen’s University

James C. Foley
Ames Laboratory

Dov B. Goldman
Precision World Products

James F.R. Grochmal
Metallurgical Perspectives

Nguyen P. Hung
Nanyang Technological University

Serope Kalpakjian
Illinois Institute of Technology

Gordon Lippa
North Star Casteel

Jacques Masounave
Université du Québec

Charles A. Parker, FASM (Vice Chair)
AlliedSignal Aircraft Landing Systems

K. Bhanu Sankara Rao
Indira Ganghi Centre for Atomic Research

Mel M. Schwartz
Sikorsky Aircraft Corporation (retired)

Peter F. Timmins
University College of the Fraser Valley

George F. Vander Voort
Buehler Ltd.
Heat Treat Distortion of Carburized and Hardened Gears 76
Mechanics of Heat Treat Distortion 77
Material and Heat Treat Process Factors 77
Vacuum-Melted versus Air-Melted Alloy Steels 81
Measurement of Gear Distortions 85
Some Recommendations to Minimize Distortion 86
Preheating of Gears .. 90
Distortion Characteristics of Some Gear Materials 90
Improvement in Gear Design to Control Heat Treat
Distortion .. 91
Grinding Stock Allowance on Tooth Flanks to
Compensate for Distortion 100
Grinding of Distorted Gears 101
Actual Stock Removal and Tooth Surface Hardness 103
New Pitting Life .. 105
Distortion Derating Factor 107
Side Effects of Grinding Carburized and Hardened
Gears .. 108
Shot Peening of Carburized and Hardened Gears 111
Heat Treat Characteristics of Two Commonly Used Gear
Materials: AISI 4320 and 9310 121
Carburizing Cost .. 122
Applications ... 123
Case History: Distortion Control of Carburized and
Hardened Gears ... 123
New Heat Treat Facilities 124
Tests .. 125
Conclusions .. 131

CHAPTER 6: Nitriding Gears .. 133
Gas Nitriding Process ... 133
Recommended Tip and Edge Radii of Teeth 137
White Layer in Nitrided Gears 137
General Recommendations of Nitrided Gears 140
Microstructure of Nitrided Cases and Cores 141
Overload and Fatigue Damage of Nitrided Gears 143
Bending-Fatigue Life of Nitrided Gears 144
Nitriding Cost .. 145
Distortion in Nitriding 145
European Nitriding Steels 146
Applications ... 147
Case History A: Nitriding 148
Case History B: Failure of Nitrided Gears 152

CHAPTER 7: Modern Nitriding Processes 159
Ion/Plasma Nitriding Gears 159
Preface

At the beginning of my career in gear design and manufacturing, I experienced a great deal of difficulty learning the art of gear heat treatment. I struggled a lot, attended a number of seminars on the subject, and spent a great deal of time experimenting with gear heat treatment. Over the last 50 years, a great deal of research has been carried out and published in the disciplines. Unfortunately, very little has been published on heat treatment of gears that is both easy to understand and useful to the gear engineer. This book has been specially written for the benefit of gear engineers engaged in design and manufacturing because I thought it would be beneficial to share my experience with the gear engineers of the future. I believe the information presented in this book will give them a good start in their careers.

Gears have been in existence for a long time. Before the invention of steel, gears were made of materials that were readily available and easily machinable, such as wood. Obviously, these gears did not last long and required frequent replacement. Cost was not as important as it is now.

Today there is continual demand for gear designs that transmit more power through smaller, lighter, quieter, and more reliable packages that must operate over a wide range of service conditions, with an increased emphasis on cost containment. The average life requirement for a gear in industrial service is now measured in millions of cycles. These requirements have accelerated the development and use of high-strength materials. Gears made of certain steels are found to meet these demands and to become especially effective when they are heat treated and finish machined for high geometric accuracy. This makes gear design and manufacturing more complex. In order to perform these tasks efficiently, a gear engineer needs to excel in various other disciplines besides design, such as manufacturing, lubrication, life and failure analysis, and machine dynamics.

Designing gears is a process of synthesis where gear size and geometry, materials, machining processes, and heat treatment are selected to meet the expected level of quality in the finished gears. These considerations are critical if the gears are to perform satisfactorily under anticipated service conditions. This led to the development of various design guidelines for an optimum gear set. However, in my opinion, the quality of gear heat treatment and its effect on gear performance and related cost are still not addressed.
In this book, I discuss gear heat treat distortion for the major heat processes in detail because my experience is that distortion of gears after heat treatment always presents difficulty in minimizing manufacturing cost. Hence, distortion control offers a challenging opportunity to a gear engineer not only in ensuring a high-quality product but also in controlling cost. A case history of each successful gear heat treat process is included. These case histories will provide important information on the quality of gear that can be expected with proper control of material and processes. This information will be beneficial not only in understanding distortion, but also in the selection of the proper gear material and appropriate heat treat process for a wide range of applications.

Writing a book takes a great deal of support and cooperation from many people. I wish to acknowledge all those who helped me with this project, with special thanks to Solar Turbines, Inc; to Mr. Bruce Kravitz of Kravitz Communications for proofreading and making many valuable editorial suggestions; and to Mrs. Sharon Jackson of Solar Turbines Inc., for typing the manuscript. I am also very grateful to Mr. Darle W. Dudley of Dudley Technical Group, Inc. for his guidance and encouragement with this project.

Finally, I would like to thank my many colleagues at the various gear manufacturing organizations with which I am associated for their help and inspiration.

A.K. Rakhit
June 2000
ASM International is the society for materials engineers and scientists, a worldwide network dedicated to advancing industry, technology, and applications of metals and materials.

ASM International, Materials Park, Ohio, USA
www.asminternational.org

This publication is copyright © ASM International®. All rights reserved.

<table>
<thead>
<tr>
<th>Publication title</th>
<th>Product code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Treatment of Gears: A Practical Guide for Engineers</td>
<td>#06732G</td>
</tr>
</tbody>
</table>

To order products from ASM International:

Online Visit www.asminternational.org/bookstore

Telephone 1-800-336-5152 (US) or 1-440-338-5151 (Outside US)

Fax 1-440-338-4634

Mail Customer Service, ASM International
9639 Kinsman Rd, Materials Park, Ohio 44073-0002, USA

Email CustomerService@asminternational.org

American Technical Publishers Ltd.
27-29 Knowl Piece, Wilbury Way, Hitchin Hertfordshire SG4 0SX, United Kingdom

Telephone: 01462 437933 (account holders), 01462 431525 (credit card)
www.ameritech.co.uk

Neutrino Inc.

In Japan

Takahashi Bldg., 44-3 Fuda 1-chome, Chofu-Shi, Tokyo 182 Japan

Telephone: 81 (0) 424 84 5550

Terms of Use. This publication is being made available in PDF format as a benefit to members and customers of ASM International. You may download and print a copy of this publication for your personal use only. Other use and distribution is prohibited without the express written permission of ASM International.

No warranties, express or implied, including, without limitation, warranties of merchantability or fitness for a particular purpose, are given in connection with this publication. Although this information is believed to be accurate by ASM, ASM cannot guarantee that favorable results will be obtained from the use of this publication alone. This publication is intended for use by persons having technical skill, at their sole discretion and risk. Since the conditions of product or material use are outside of ASM's control, ASM assumes no liability or obligation in connection with any use of this information. As with any material, evaluation of the material under end-use conditions prior to specification is essential. Therefore, specific testing under actual conditions is recommended.

Nothing contained in this publication shall be construed as a grant of any right of manufacture, sale, use, or reproduction, in connection with any method, process, apparatus, product, composition, or system, whether or not covered by letters patent, copyright, or trademark, and nothing contained in this publication shall be construed as a defense against any alleged infringement of letters patent, copyright, or trademark, or as a defense against liability for such infringement.