Introduction to Aluminum Alloys and Tempers

J. Gilbert Kaufman
Contents

Preface .. vii

CHAPTER 1: Introduction: The Nature of the Problem 1
 The Keys to Understanding 2
 Characteristics of Wrought Aluminum Alloys 3
 Characteristics of Cast Aluminum Alloys 5
 Definitions for Aluminum and Aluminum Alloys 5
 Applications of Aluminum Alloys 7
 Microscopy of Aluminum and Aluminum Alloys 7
 Units and Unit Conversion 7

CHAPTER 2: Aluminum Alloy and Temper Designation
 Systems of the Aluminum Association 9
 Wrought Aluminum Alloy Designation System 10
 Cast Aluminum Alloys Designation System 11
 Designations for Experimental Aluminum Alloys 16
 Aluminum Alloy Temper Designation System 16
 Basic Temper Designations 16
 Subdivisions of the Basic Tempers 17
 Summary .. 22

CHAPTER 3: Understanding Wrought and Cast
 Aluminum Alloys Designations 23
 The Wrought Alloy Series 23
 How the System is Applied 23
 Principal Alloying Elements 25
 Understanding Wrought Alloy Strengthening
 Mechanisms 25
 Understanding Wrought Alloy Advantages and
 Limitations 26
 Other Characteristics Related to Principal Alloying
 Element ... 28
 Understanding Wrought Alloy Variations 30
 Links to Earlier Alloy Designations 31
 Unified Numbering System (UNS) Alloy Designation
 System for Wrought Alloys 31
 The Cast Alloy Series 32
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER 4: Understanding the Aluminum Temper Designation System</td>
<td>39</td>
</tr>
<tr>
<td>Tempers for Wrought Aluminum Alloys</td>
<td>39</td>
</tr>
<tr>
<td>Review of the Basic Tempers for Wrought Alloys</td>
<td>57</td>
</tr>
<tr>
<td>Subdivisions of the Basic Tempers</td>
<td>60</td>
</tr>
<tr>
<td>Tempers Designating Residual Stress Relief of Heat Treated Products</td>
<td>67</td>
</tr>
<tr>
<td>Temper Designations Identifying Modifications in Quenching</td>
<td>68</td>
</tr>
<tr>
<td>Designations Indicating Heat Treatment by User</td>
<td>68</td>
</tr>
<tr>
<td>Tempers Identifying Additional Cold Work between Quenching and Aging</td>
<td>70</td>
</tr>
<tr>
<td>Tempers Identifying Additional Cold Work Following Aging</td>
<td>70</td>
</tr>
<tr>
<td>Tempers Designating Special Corrosion-Resistant Tempers</td>
<td>71</td>
</tr>
<tr>
<td>Temper Designation for Special or Premium Properties</td>
<td>71</td>
</tr>
<tr>
<td>Tempers for Cast Aluminum Alloys</td>
<td>73</td>
</tr>
<tr>
<td>Review of the Basic Tempers for Cast Alloys</td>
<td>73</td>
</tr>
<tr>
<td>Subdivisions of the Basic Temper Types for Cast Alloys</td>
<td>74</td>
</tr>
<tr>
<td>Importance to Understanding Aluminum Tempers</td>
<td>76</td>
</tr>
<tr>
<td>CHAPTER 5: Understanding Aluminum Fabricating Processes</td>
<td>77</td>
</tr>
<tr>
<td>Ingot and Billet Casting</td>
<td>77</td>
</tr>
<tr>
<td>Strip and Slab Casting</td>
<td>78</td>
</tr>
<tr>
<td>Hot and Cold Rolling</td>
<td>78</td>
</tr>
<tr>
<td>Extrusion</td>
<td>79</td>
</tr>
<tr>
<td>Forging</td>
<td>79</td>
</tr>
<tr>
<td>Cast Parts</td>
<td>80</td>
</tr>
<tr>
<td>Permanent Mold Casting</td>
<td>80</td>
</tr>
<tr>
<td>Sand Casting</td>
<td>81</td>
</tr>
</tbody>
</table>
ASM International
Technical Books
Committee (1999-2000)

Sunniva R. Collins (Chair)
Swagelok/Nupro Company
Eugen Abramovici
Bombadier Aerospace (Canadair)
A.S Brar
Seagate Technology Inc.
Ngai Mun Chow
Det Norske Veritas Pte Ltd.
Seetharama C. Deevi
Phillip Morris, USA
Bradley J. Diak
Queen’s University
Dov B. Goldman
Precision World Products
James F.R. Grochmal
Metallurgical Perspectives
Nguyen P. Hung
Nanyang Technological University
Serope Kalpakjian
Illinois Institute of Technology

Gordon Lippa
North Star Casteel
Jacques Masounave
Université du Québec
Charles A. Parker (Vice Chair)
AlliedSignal Aircraft Landing Systems
K. Bhanu Sankara Rao
Indira Gandhi Centre for Atomic Research
Mel M. Schwartz
Sikorsky Aircraft Corporation (retired)
Peter F. Timmins
University College of the Fraser Valley
George F. Vander Voort
Buehler Ltd.
Preface

The idea for this timely reference book was originally suggested by Tom Croucher, a California-based consulting metallurgist. Dr. Croucher and Harry Chandler of ASM International provided input for the first draft version. I broadened it out substantially to cover the understanding of the advantages and limitations of aluminum alloy/temper combinations in terms of the relationship of their composition, process history, and microstructure to service requirements.

I would like to acknowledge Dr. John A. S. Green and the Aluminum Association, Inc. for making available critically important material for inclusion in this book. Among the Aluminum Association publications used as key references, notably on the alloy and temper designation system and aluminum terminology, were the following:

- *Aluminum Standards and Data*
- *Standards for Aluminum Sand and Permanent Mold Castings*
- *Aluminum: Technology, Applications, and Environment*

More complete citations to these and other reference materials are given in the Selected References, Chapter 8.

Among the ASM International books used as major sources, most notably for micrographs, are the following:

- *ASM Specialty Handbook: Aluminum and Aluminum Alloys*

Finally, I want to acknowledge the publications of the American Foundrymen’s Society, Inc. and the Diecasting Development Council, whose publications *Aluminum Casting Technology* and *Product Design for Die Casting*, respectively, provided excellent resources for casting terminology and descriptions of casting procedures.

J. Gilbert Kaufman
Columbus, Ohio