March 26 & April 22 Special Announcements

March 26

Lou Wirtz is Retiring!

Please help us celebrate his 37 years at Lockheed Martin by joining him on

March 26, 2013 @ 11:30am
at
Michaels at Shoreline
2960 N Shoreline Blvd
Mountain View

Cost: $30.00, includes lunch & gift
- Pork Loin Roast
- Chicken, Saute Sec
- Broiled Salmon
- Spinach and Cheese Tortellini
- Iced Tea, Dessert & Coffee

RSVP by March 22:
Stephanie Patterson, x25160
Marta Ortiz-Rodriguez, x60249
Stacy Ewert

April 13

Chapter Social Event

Our next social event is scheduled for 13 April and is intended to be a tour of the Hiller Aviation Museum at the San Carlos Airport, just east of the 101 at the Holly exit. We plan to meet and tour the museum followed by a lunch gathering at another nearby location. Contact Paul Flowers at paul.flowers@lmco.com to sign up.
Nanostructured Thermosets:
From model networks to advanced materials
Speaker: Prof. Jean-Pierre Pascault

The bay area is fortunate to have an international star in the field of polymer science speaking at the GGPF dinner meeting April 22. Netzsch Instruments is sponsoring this presentation by Prof. Jean-Pierre Pascault. We encourage your scientists and engineers to take advantage of this rare opportunity.

Monday, the 22nd of April, We will be meeting at our usual location: Michael's at Shoreline 2960 Shoreline Blvd., Mountain View, CA 94043; 650-962-1014

5:30 pm Social/Networking 6:15 pm Dinner 7:30 pm Speaker
Dinner Cost: Early Registration $30........ Students/Retired $15........ Late Reg/Walk-in $40
Registration: Please register on the webpage at http://www.ggpf.org/ or
Contact Bruce Prime at rbprime@sbcglobal.net

Abstract
Thermoset precursors are frequently formulated with modifiers like small molecules, oils, low- or high-molar mass rubbers or thermoplastics. One application which has been an interesting and challenging topic for over four decades is the toughening of thermosetting polymers for adhesives, coatings and composites. In recent years, a new thermoset toughening approach using self-assembling amphiphilic block copolymers, BCPs has drawn significant attention. The incorporation of a small amount of dispersed microphase-separated BCP can produce significant improvements in fracture toughness without compromising other properties of the neat epoxy network. But to develop innovative technologies involving thermoplastic films or fibers, thermoset powders, prepps for infusion, or resin transfer molding (RTM), the initial viscosity of the formulation and the viscosity increase during the curing process have to be controlled. Some examples of the use of BCPs for preparing advanced (and also functional) materials will be given during this presentation.

Biosketch
Professor Pascault is Emeritus Professor at the National Institute of Applied Science (INSA) Lyon France. He was Professor in the same Institute from 1983 to 2005; Director of the Laboratory of Macromolecular Materials (Associated with the French National Center for Scientific Research (CNRS)) from 1982 to 1998; Director of a CNRS Polymer Network Group (FR CNRS) from 2000 up to 2006; President of the French Polymer Group, GFP, and of the Polymer Division of the French Chemical Society, SFC from 2001 to 2004. He has authored over 320 scientific publications including several book chapters and two books (Thermosetting Polymers, J.P. Pascault, H. Sautereau, J. Verdu and R.J.J. Williams, Marcel Dekker, 2000 and Epoxy Polymers: New Materials and Innovations, J.P. Pascault and R. J. J. Williams, Wiley, 2010) and 32 patents.