Foreword

This 2015 edition of *ASM Handbook, Volume 7, Powder Metallurgy* is a completely revised and updated work written and reviewed by the leading experts in the field. Last updated in 1998, this new Volume 7 covers conventional powder metallurgy (press and sinter) as well as an entire new section devoted to metal injection molding, including its applications, and an article on metal injection molding of microcomponents.

Based on feedback from users, the revised Volume has been reorganized for clarification. Principles and techniques of powder metallurgy are discussed first, followed by detailed divisions covering production and characterization of different metals and alloys.

ASM International is grateful for the work and dedication of volunteer editors, authors, and reviewers who devoted their time and expertise to develop a reference publication of the highest technical and editorial quality. A special note of thanks is offered to the division editors who put forth extraordinary efforts to keep this massive project focused and completed on schedule. The result is a comprehensive body of knowledge from the world’s leading innovators, researchers, and practitioners in the powder metallurgy field.

ASM International also thanks the Metal Powder Industries Federation for its cooperation and assistance with figure permissions, reviewers, and providing meeting space for editors. Figure permissions were also freely granted from *Powder Injection Moulding International*, published by Inovar Communications.

Sunniva R. Collins, Ph.D.
President
ASM International

Terry F. Mosier
Interim Managing Director
ASM International
Preface

Powder metallurgy (PM) is a versatile and multifaceted technology. Most commonly, it is used to produce complex structural components with superior dimensional accuracy and good mechanical properties in a cost-effective manner. Apart from this, it is the only way possible to produce some highly specialized material, such as cermet, hard metals, and metallic filters. It is also used to produce improved versions of high-performance alloys (tool steels, magnetic alloys, and composite materials) by ensuring superior control of microstructure and purity. In terms of tons produced, the PM industry is still considered small with only 1% by weight of all metals sold in the industry, but in terms of dollar value, due to its unique capabilities, its use is growing at a faster rate than average.

In 1984, the first ASM Handbook Volume devoted entirely to PM was published in recognition of the increasing acceptance of PM as a viable manufacturing technology. A revised edition published in 1998 captured significant advancements made in the interim. Both of these Volumes have served the PM community well. Technological advancements continue to be made in all facets of PM as more and more new applications come on board and also as the traditional applications are challenged to deliver greater performance and economy. The technology is growing both in its breadth and depth. During the planning of the current edition, it was felt that it would not be feasible to cover all facets of PM technology in one Volume. It was also felt that the practicing PM industry professional generally has different needs than researchers and academicians. In view of this, it was decided to focus this Volume primarily on the traditional press-and-sinter PM technology. The more advanced techniques and emerging technologies, such as additive manufacturing, are deferred to other potential Volumes. A notable exception to this premise is the inclusion of metal injection molding (MIM) in this Volume, which is presented as a distinct division.

Material properties achieved with PM processing can vary widely depending on the process parameters used as well as the starting raw material. To achieve optimal properties for a given application, one must have full understanding of the effects of process variables on the microstructure, and macrostructure of the component (including density), which, in turn, will influence its physical and mechanical properties. The process engineer must balance process complexity and the costs associated with it against the resulting material properties, as well as the dimensional requirements. The process-property relationships can vary to a large extent from one metal/ alloy family to another. The revised Volume’s format is aimed at simplifying the understanding of process-property relationships by treating each metal/alloy family in individual divisions.

The Volume is organized in two parts. The first part (following an introductory division on history and material standards) covers the basic principles and techniques that are common to all PM materials. These divisions include powder manufacture, powder characterization, compaction, sintering, and full density processing. The information provided in these divisions is sufficient for developing a basic understanding of the subject. For additional information, the reader is encouraged to refer to textbooks devoted to these subjects. The second part covers detailed information on PM technology as it applies to individual metal/alloy families, by presenting each metal/alloy family in a separate division. Within each material-specific division, the information presented follows the typical production steps: powder manufacture, compaction, sintering, secondary processing, as well as properties and applications. Major emphasis is placed on the material and processes as they are currently used in industry. All MIM-produced materials are covered under the division on metal injection molding, so as to avoid any confusion with property comparison with materials produced by traditional PM processing.

The Volume is designed to serve as a reference book for PM professionals—process engineers, development engineers, production managers, as well as the sales and marketing personnel. The updated material properties data presented in this Volume will also be helpful to the design engineer and assist him or her in specifying PM components in new applications. The Volume bridges the gap between standard textbooks and research papers presented at technical conferences. The presentation of information is such that it can be used as an introduction to powder metallurgy by the new workforce entering the field.

We would like to offer our sincere thanks to the contributing authors, most of whom worked on their own time to prepare the articles that make up this Volume. This extensively reorganized edition would not have been possible without the dedicated efforts of the division editors. Special thanks are due to the ASM Handbook Committee as well as Steven Lampman, Content Developer and ASM Handbook Committee Staff Liaison of ASM, for their vision and guidance. The cooperation and assistance of the Metal Powder Industries Federation and its sister organization, American Powder Metallurgy Institute, are greatly appreciated.

Much appreciation goes to Ms. Vicki Burt, Content Developer, for organizing and coordinating the entire project. Also, to the editorial staff of ASM for editing the submitted material; all of their work on this Volume was invaluable.
Policy on Units of Measure

By a resolution of its Board of Trustees, ASM International has adopted the practice of publishing data in both metric and customary U.S. units of measure. In preparing this Handbook, the editors have attempted to present data in metric units based primarily on Système International d’Unités (SI), with secondary mention of the corresponding values in customary U.S. units. The decision to use SI as the primary system of units was based on the aforementioned resolution of the Board of Trustees and the widespread use of metric units throughout the world.

For the most part, numerical engineering data in the text and in tables are presented in SI-based units with the customary U.S. equivalents in parentheses (text) or adjoining columns (tables). For example, pressure, stress, and strength are shown both in SI units, which are pascals (Pa) with a suitable prefix, and in customary U.S. units, which are pounds per square inch (psi). To save space, large values of psi have been converted to kips per square inch (ksi), where 1 ksi = 1000 psi. The metric tonne (kg \(\times 10^3 \)) has sometimes been shown in megagrams (Mg). Some strictly scientific data are presented in SI units only.

To clarify some illustrations, only one set of units is presented on artwork. References in the accompanying text to data in the illustrations are presented in both SI-based and customary U.S. units. On graphs and charts, grids corresponding to SI-based units usually appear along the left and bottom edges. Where appropriate, corresponding customary U.S. units appear along the top and right edges.

Data pertaining to a specification published by a specification-writing group may be given in only the units used in that specification or in dual units, depending on the nature of the data. For example, the typical yield strength of steel sheet made to a specification written in customary U.S. units would be presented in dual units, but the sheet thickness specified in that specification may be presented only in inches.

Data obtained according to standardized test methods for which the standard recommends a particular system of units are presented in the units of that system. Wherever feasible, equivalent units are also presented. Some statistical data may also be presented in only the original units used in the analysis.

Conversions and rounding have been done in accordance with IEEE/ASTM SI-10, with attention given to the number of significant digits in the original data. For example, an annealing temperature of 1570 °F contains three significant digits. In this case, the equivalent temperature would be given as 855 °C; the exact conversion to 854.44 °C would not be appropriate. For an invariant physical phenomenon that occurs at a precise temperature (such as the melting of pure silver), it would be appropriate to report the temperature as 961.93 °C or 1763.5 °F. In some instances (especially in tables and data compilations), temperature values in °C and °F are alternatives rather than conversions.

The policy of units of measure in this Handbook contains several exceptions to strict conformance to IEEE/ASTM SI-10; in each instance, the exception has been made in an effort to improve the clarity of the Handbook. The most notable exception is the use of g/cm³ rather than kg/m³ as the unit of measure for density (mass per unit volume).

SI practice requires that only one virgule (diagonal) appear in units formed by combination of several basic units. Therefore, all of the units preceding the virgule are in the numerator and all units following the virgule are in the denominator of the expression; no parentheses are required to prevent ambiguity.
List of Contributors and Reviewers

James P. Adams
MPIF and APMI International

David A. Alven
Aerojet Ordnance Tennessee

Herman E. Amaya
One Subsea Company

Diran Apelian
Worcester Polytechnic Institute

Mark Assel
Carlisle Brake & Friction

Anthony Banik
ATI High Performance and Specialty Materials

J. Baumeister
Fraunhofer Institute for Manufacturing Technology and Advanced Materials

Paul Beiss
RWTH Aachen University

Andrew Bell
DiaPac

D. Paul Bishop
Dalhousie University

Carl Blais
Université Laval

Animesh Bose
Materials Processing, Inc.

Paul Bratland
OneSubsea

Matt Bulger
NetShape Technologies, Inc.

Steven G. Caldwell
Kemmetal Firth Sterling

Charles Carson
Fort Wayne Wire Die, Inc., retired

James A. Catanese
North American Höganäs, Inc.

Denis Christopherson Jr.
Federal-Mogul Corporation

Suk Hwan Chung
Hyundai Steel Company

James R. Ciulik
Laser Welding Solutions

Dennis R. Cloutier
CSP

Kevin R. Couchman
GKN Höganäs

Wayne K. Daye
ACuPowder/ECKA Granules/SCM Metal Products, Inc.

Peter A. dePoutiloff
SSI Technologies

John J. Dunkley
Atomising Systems Ltd.

Vlad Duz
ADMA Products Inc.

Mark Eisenmann
Porvair Filtration Group, Porvair PLC

Sami M. El-Soudani
The Boeing Company

Ravi K. Enneti
Global Tungsten and Powders

Z.Z. Fang
University of Utah

Stephen L. Feldbauer
Abbott Furnace Company

F. H. (Sam) Froes
Consultant

Randall M. German
San Diego State University

Anthony Griffio
Smith Bits, a division of Schlumberger

Jack A. Hamill Jr.
Hoeganaes Corp., retired

Francis Hanejko
Hoeganaes Corp.

Don H. Hashiguchi
Materion Corporation

Paul Hauck
Kinetics

Uwe Haupt
ARBURG GmbH +Co KG

Bo Hu
North American Höganäs, Inc.

Ronald G. Iacocca
Eli Lilly

E. Ilia
Metaldyne Performance Group

M. Ashraf Imam
The George Washington University

W. Brian James
Hoeganaes Corp., retired

Thomas Jewett
Global Tungsten and Powders

John L. Johnson
Elmet Technologies LLC

Jesse Joys
AMPAL Inc.

H. Kestler
PLANSEE SE

Jayant Khambekar
Jenike & Johanson, Inc.

Andrey Kletsov
ADMA Products Inc.

Lou Koehler
Koehler Associates

M. Koopman
University of Utah

Howard A. Kuhn
The ExOne Company

Prabhat Kumar
Consultant

Young-Sam Kwon
CetaTech, Inc

Jane LaGoy
Bodycote IMT, Inc.

Chaman Lall
Metal Powder Products Company

Steven Lampman
ASM International

Gerhard Leichtfried
University of Innsbruck

Todd Leonhardt
Rhenium Alloys Inc.

Jim Lingenfelter
NetShape Technologies, Inc.

Sydney Luk
Höganäs AB
Michael L. Marucci
Hoeganaes Corp.

Stephen J. Mashl
Michigan Technological University

Mykhailo Matviychuk
ADMA Products Inc.

Brian J. McTiernan
ATI Powder Metals

Pankaj K. Mehrotra
Kennametal, Inc.

John H. Moll
Consultant

Amanda L. Morales
Materion Corporation

Richard Morgan
Porvair Filtration Group, Porvair PLC

Vladimir Moxson
ADMA Products Inc.

Thomas F. Murphy
Hoeganaes Corp.

Neal Myers
Kennametal, Inc.

Kalathur S. Narasimhan
Hoeganaes Corp.

Harb S. Nayar
TAT Technologies

Joseph W. Newkirk
Missouri University of Science and Technology

Salvator Nigarura
PMG Indiana Corporation

James J. Oakes
Consultant

Seong Jin Park
Pohang University of Science and Technology

Dan Paulonis
Raymar

Thomas W. Pelletiers II
ACuPowder/ECKA Granules/SCM Metal Products, Inc.

Thomas Philips
Air Products and Chemicals, Inc.

Richard R. Phillips
Engineered Pressed Materials

Volker Piotter
Karlsruhe Institute of Technology (KIT)

Brian Pittenger
Jenike & Johanson, Inc.

Thomas Podbesek
Consultant

Peter E. Price
Consultant

Mohamed N. Rahaman
Missouri University of Science and Technology

R. Randon
Magnesium Elektron Powders

N. Reheis
PLANSEE SE

Troy Robinson
Cincinnati Incorporated

Gary Runyon
Kennametal Firth Sterling

Rajendra Sadangi
Armament Research, Development and Engineering Center

Prasan K. Samal
Consultant

V. Samarov
Laboratory of New Technologies (LNT) PM Inc.

Binky Sargent
Kennametal, Inc.

Aaron B. Sayer
Materion Corporation

Chris Schade
GKN Hoeganaes

Graham Schaffer
University of Queensland

D. Seliverstoy
Laboratory of New Technologies (LNT) PM Inc.

Raymond Serafini
Linde LLC

Suresh O. Shah
MPG-Cloyes Gear

Thomas R. Shearer
Aggressive Grinding Service, Inc.

John A. Shields, Jr.
PentaMet Associates, LLC

Peter K. Sokolowski
Hoeganaes Corp.

Joseph T. Strauss
HJE Company, Inc.

Viktor Sukhoplyuyev
ADMA Products Inc.

Mark Svilar
Materion Corporation

Pierre Taubenblat
Promet Associates

X. Wang
University of Utah

Roland T. Warzel III
North American Höganäs, Inc.

J. Weise
Fraunhofer Institute for Manufacturing Technology and Advanced Materials

Nick Williams
Inovar Communications Ltd.

Andrzej Wojcieszynski
ATI Powder Metals

Thomas A. Wolfe
Global Tungsten and Powders

Sunniva R. Collins
President
Case Western Reserve University

Jon D. Tirpak
Vice President
SCRA Applied R&D

Craig D. Clauser
Treasurer
Craig Clauser Engineering Consulting

Terry F. Mosier
Secretary and Interim Managing Director
ASM International

C. Ravi Ravindran
Immediate Past President
Ryerson University

Iver Anderson
Ames Laboratory

Kathryn A. Dannemann
Southwest Research Institute

Mitchell Dorfman
Sulzer Metco (US), Inc.

Jacqueline M. Earle
Caterpillar, Inc

James C. Foley
Los Alamos National Laboratory

John R. Krouth
Applied Process, Inc.

Zi-Kui Liu
The Pennsylvania State University

Tirumalai S. Sudarshan
Materials Modification, Inc.

David B. Williams
The Ohio State University

Student Board Members

Virginia K. Judge
Colorado School of Mines

Anthony M. Lombardi
Ryerson University

Myrissa N. Maxfield
Virginia Tech

George F. Vander Voort, Chair
Struers Inc.

Alan P. Druschitz, Vice Chair
Virginia Tech

Joseph W. Newkirk, Immediate Past Chair
Missouri University of Science & Technology

Craig Clauser, Ex-Officio Member
Craig Clauser Engineering Consulting

Jacqueline M. Earle, Board Liaison
Caterpillar

John R. Krouth, Board Liaison
Applied Process Incorporated

Scott Beckwith
SAMPE

Rodney R. Boyer
RBTI Consulting

Narendra B. Dahotre
University of North Texas

Jon L. Dossett
Consultant

Steven C. Heifner
Sypris Technologies Incorporated

Volker Heuer
ALD Vacuum Technologies GmbH

Li Ling
Shanghai University

Brett A. Miller
IMR Metallurgical Services

Erik M. Mueller
National Transportation Safety Board

Thomas E. Prucha
American Foundry Society

Valery Rudnev
Inductoheat Incorporated

Satyam Suraj Sahay
John Deere Technology Center India

Prasan K. Samal
Consultant

Roch J. Shipley
Professional Analysis Consulting Inc.

Manas Shiraqoar
Elwood National Crankshaft

Jeffrey S. Smith
Material Processing Technology LLC

Jaimie S. Tiley
US Air Force Research Lab

George E. Totten
G.E. Totten & Associates LLC

Dustin A. Turnquist
Engineering Systems Inc.

Charles V. White
Kettering University

Chairs of the ASM Handbook Committee

J.F. Harper
(1923–1926) (Member 1923–1926)

W.J. Merten
(1927–1930) (Member 1923–1933)

L.B. Case
(1931–1933) (Member 1927–1933)

C.H. Herty, Jr.
(1934–1936) (Member 1930–1936)

J.P. Gill
(1937) (Member 1934–1937)

R.L. Dowdell
(1938–1939) (Member 1935–1939)

G.V. Luerssen
(1943–1947) (Member 1942–1947)

J.B. Johnson
(1948–1951) (Member 1944–1951)

E.O. Dixon

N.E. Promisel

R.W.E. Leiter

D.J. Wright
(1964–1965) (Member 1959–1967)

J.D. Graham

W.A. Stadler

G.J. Shubat

E. Ward

G.N. Maniar

M.G.H. Wells

J.L. McCall

L.J. Korb

T.D. Cooper

D.D. Huffman

D.L. Olson

R.J. Austin

W.L. Mankins
(1994–1997) (Member 1989–)

M.M. Gauthier

C.V. Darragh
(1999–2002) (Member 1989–)

Henry E. Fairman

Jeffrey A. Hawk
(2004–2006) (Member 1997–)

Larry D. Hanke
(2006–2008) (Member 1994–)

Kent L. Johnson
(2008–2010) (Member 1999–)

Craig D. Clauser
(2010–2012) (Member 2005–)

Joseph W. Newkirk
(2012–2014) (Member 2005–)

George F. Vander Voort
(2014–) (Member 1997–)
Contents

Introduction to Powder Metallurgy .. 1

History of Powder Metallurgy
James P. Adams ... 3
Earliest Developments .. 3
Powder Metallurgy of Platinum 4
Further Developments .. 5
Commercial Developments 5
Post-War Developments .. 6
Recent Developments .. 7
Powder Metallurgy Literature 7
Powder Metallurgy Trade Associations 7

Powder Metallurgy Methods and Applications
W. Brian James ... 9
Metal Powders .. 9
Powder Processing ... 10
Powder Metallurgy Material Properties 10
Processing Options to Consolidate Metal Powders 11
Processing to Full Density 12
Freeform Fabrication ... 14
Finishing Operations ... 14

Specialty Applications of Metal Powders
Jack A. Hamill, Jr. ... 20
Copier Powders .. 22
Flake Pigments .. 24
Fuels .. 25
Fillers ... 27
Food Enrichment ... 28
Environmental Remediation 29
Material Substitution .. 29
Magnetic and Electrical Applications 29
Medical ... 29

Safety and Environmental Aspects 31
Dust Generation .. 31
Potential Dust Hazards .. 31
Health Effects .. 32
Dust Combustion/Explosions 32
Fire Triangle and Dust Explosion Pentagon 33
Assessment of Dust Explosion Potential 33
Prevention of Metal Dust Hazards 34
Powder Metallurgy Presses 37
Safeguarding .. 37
Responsibilities ... 38
Auxiliary Functions .. 39
Electrical Controls ... 39
Die Installation and Removal 40
Training .. 41
Changes to the New ANSI B11.16 (MPIF 47) in 2014 42
Atmosphere Directionality 43
Atmosphere Introduction 43
Outside Influences ... 44

Materials Standards and Test Method Standards for
Powder Metallurgy
W. Brian James .. 45
Standards Development .. 45
Materials Standards .. 47

MPIF/ASTM Powder Metallurgy Materials
Designation Codes ... 48
ISO Standards for Powder Metallurgy Materials 49
Test Method Standards .. 49

Metal Powder Production .. 53

Introduction to Metal Powder Production and Characterization
Chris Schade ... 55

General Methods of Metal Powder Production
Chris Schade ... 55

Ferrous and Nonferrous Powders 55
Powder Characterization and Testing 56

Atomization
Chris Schade and John J. Dunkley 58
Process Variables ... 61
Particle Size .. 62
Particle Size Distribution 63
Powder Characteristics 63
Oil Atomization ... 65
Gas Atomization .. 65
Process Variables ... 66
Gas-Atomized Powders 66
Rotating Electrode Process 69

Chemical and Electrolytic Methods of Powder Production
Chris Schade ... 72
Oxide Reduction ... 72
Precipitation from Solution 72
Thermal Decomposition 74
Other Chemical Methods 74
Electrodeposition ... 75

Milling of Brittle and Ductile Materials
Chris Schade ... 77
Principles of Milling—Phenomenological Description 77
Milling Parameters and Powder Characteristics 80

Blending and Premixing of Metal Powders and Binders
Chris Schade ... 88
Blending and Premixing Variables 88
Effect of Powder Characteristics 89
Equipment for Blending and Premixing 90

Metal Powder Characterization 93

Sampling and Classification of Powders
Brian Pittenger .. 95
Sampling of Powders ... 95
Sampling Stored Material 96
Sampling Flowing Streams 97
Sample Reduction .. 98
Evaluation of Sampling 99
Weight of Sample Required 99
Powder Classification 100
Basic Variables .. 100
Systems for Powder Classification 100

Sieving Methods .. 102
Sieve Types .. 103
Process Variables .. 103
Methods of Sieving ... 105
Wetting Powder Clumps into the Liquid 108
Breaking up Wetted Clumps 108
Preventing Flocculation of Dispersed Particles 109
Selecting a Dispersing Agent 109

Bulk Properties of Powders
Sydney H. Luk ... 111
Powder Morphology 111
Powder Properties 111
Cohesive Strength 113
Frictional Properties 114
Bulk Density .. 115
Permeability and Flow Rate 119
Sliding at Impact Points 121
Segregation Tendency 121
Angle of Repose ... 122
Green Strength and Springback 123
Chemical Composition 124
Conclusion .. 124

Particle Image Analysis
Bo Hu .. 154
Sample Preparation 154
Examples of Particle Image Analysis on Iron 145
Powder Particles .. 154

Ferrous Powder Metallurgy Metallography
Thomas F. Murphy 156
Sample Selection 157
Cross Section Removal 158
Mounting .. 160
Removal of the Deformed Metal Layer 160
Grinding and Polishing 161
After Preparation 162
Examination .. 162
Etching and Interference Layer Deposition 164
Optical Microscopy Techniques 165
Safety .. 166

Metal Powder Compaction 169
Compressibility and Compactibility of Metal Powders
Steve Lampman .. 171
Compressibility .. 171
Green Strength .. 175
Modeling and Simulation of Press and Sinter
Powder Metallurgy
Suk Hwan Chung, Young-Sam Kwon, Seong Jin Park and
Randall M. German 179
Brief History ... 179
Theoretical Background and Governing Equations 180
Experimental Determination of Material Properties
and Simulation Verification 181

Demonstration of System Use 184
Conclusion .. 186

Powder Metallurgy Presses and Tooling
Troy Robinson ... 191
Compacting Press Requirements 191
Mechanical Presses 192
Hydraulic Presses 192
Comparison of Mechanical and Hydraulic Presses 193
Part Classification 193
Shape of Rigid Tooling 194
Powder Fill .. 194
Tooling Systems .. 195
Types of Presses 196
Advanced Tool Motions 197
Tooling Design .. 198
Tool Materials .. 200
Tooling Clearances and Design 201

Sintering Basics .. 203
Sintering Theory and Fundamentals
Mohamed N. Rahaman 205
Types of Sintering 206
Measurement of Sintering 207
Analysis of Sintering 207
Solid-State Sintering 207
Grain Growth in Solid-State Sintering 211
Processing and Microstructural Variables in
Solid-State Sintering 213
Viscous Sintering 216
Liquid-Phase Sintering 216
Supersolidus Liquid-Phase Sintering 224
Transient Liquid-Phase Sintering 227
Activated Sintering 228
Pressure-Assisted Sintering 229

Sintering Atmospheres
Harb S. Nayar ... 237
Preparation Section Atmosphere Requirements 237
Sintering Section Atmosphere Requirements 239
Initial Cooling Section Requirements 239
Final Cooling Section Requirements 239
Types of Atmospheres 239
Furnace Zoning Concept (Ref 24–29) 244
Increase in Throughput and Reduction in Energy
Consumption per Pound of Sintered Parts 245
Safety and Environmental Concerns in Using
Sintering Atmospheres
Thomas Philips and Harb Nayar 247
Safety Concerns .. 249
Environmental Concerns 249

Full-Density Consolidation Methods 251
Introduction to Full Density Powder Metallurgy
Prasan K. Samal .. 253
Cold Isostatic Pressing
Peter E. Price .. 255
Process Characteristics 255
Process Equipment 256
Wet-Bag Isostatic Pressing 257
Part Size and Shape 257
Powder Properties 258
Process Parameters 258
Powder Metallurgy Processing by Hot Isostatic Pressing
Stephen J. Mashl 260
History ... 260
The Hot Isostatic Pressing Process 261
<table>
<thead>
<tr>
<th>Fabricating Products Using Hot Isostatic Pressing</th>
<th>263</th>
</tr>
</thead>
<tbody>
<tr>
<td>Powder Metallurgy Techniques</td>
<td>263</td>
</tr>
<tr>
<td>Microstructure and Properties</td>
<td>267</td>
</tr>
<tr>
<td>Summary</td>
<td>269</td>
</tr>
<tr>
<td>Powder Hot Pressing and Forging</td>
<td>271</td>
</tr>
<tr>
<td>Howard A. Kuhn</td>
<td>271</td>
</tr>
<tr>
<td>Powder Forging</td>
<td>271</td>
</tr>
<tr>
<td>Hot Pressing</td>
<td>275</td>
</tr>
<tr>
<td>Extrusion of Metal Powders</td>
<td>277</td>
</tr>
<tr>
<td>Mechanics of Powder Extrusion</td>
<td>278</td>
</tr>
<tr>
<td>Powder Extrusion Practice</td>
<td>281</td>
</tr>
<tr>
<td>Examples of Materials Processed by Powder Extrusion</td>
<td>281</td>
</tr>
<tr>
<td>Continuous Extrusion Process</td>
<td>284</td>
</tr>
<tr>
<td>Conclusions</td>
<td>284</td>
</tr>
<tr>
<td>Direct Powder Rolling</td>
<td>286</td>
</tr>
<tr>
<td>Prasan K. Samal</td>
<td>286</td>
</tr>
<tr>
<td>Basic Process</td>
<td>286</td>
</tr>
<tr>
<td>Practical Considerations in Direct Powder Rolling</td>
<td>287</td>
</tr>
<tr>
<td>Reasons to Use Direct Powder Rolling</td>
<td>287</td>
</tr>
<tr>
<td>Powder Metallurgy Carbon and Low-Alloy Steels</td>
<td>293</td>
</tr>
<tr>
<td>Ferrous Powder Metallurgy Materials</td>
<td>295</td>
</tr>
<tr>
<td>W. Brian James</td>
<td>295</td>
</tr>
<tr>
<td>Allloying Methods</td>
<td>296</td>
</tr>
<tr>
<td>Ferrous Powder Materials</td>
<td>301</td>
</tr>
<tr>
<td>Mechanical Properties of Ferrous Powder Metallurgy Materials</td>
<td>311</td>
</tr>
<tr>
<td>Production of Powder Metallurgy Carbon and Low-Alloy Steels</td>
<td>311</td>
</tr>
<tr>
<td>Michael L. Marucci and James A. Cutaneous</td>
<td>311</td>
</tr>
<tr>
<td>Production of Iron and Steel Powder by Water Atomization</td>
<td>312</td>
</tr>
<tr>
<td>Production of High-Porosity Iron Powders</td>
<td>314</td>
</tr>
<tr>
<td>Production of Iron Powder by Carbonyl Vapor Metallurgy</td>
<td>316</td>
</tr>
<tr>
<td>Diffusion Alloying and Bonding</td>
<td>319</td>
</tr>
<tr>
<td>Warm Compaction and Warm Die Compaction</td>
<td>322</td>
</tr>
<tr>
<td>Francis Hanejko</td>
<td>322</td>
</tr>
<tr>
<td>Pore-Free Density</td>
<td>322</td>
</tr>
<tr>
<td>Effects of Warm Die Compaction on Green and Sintered Properties</td>
<td>322</td>
</tr>
<tr>
<td>Process Considerations</td>
<td>323</td>
</tr>
<tr>
<td>Tooling Design for Warm Compaction</td>
<td>324</td>
</tr>
<tr>
<td>Mechanical Properties of Warm-Compacted and Warm-Die-Compacted Powder Metallurgy Components</td>
<td>324</td>
</tr>
<tr>
<td>Copper-Infiltrated Steels</td>
<td>326</td>
</tr>
<tr>
<td>Wayne K. Daye and Thomas W. Pelletiers II</td>
<td>326</td>
</tr>
<tr>
<td>Basic Requirements</td>
<td>326</td>
</tr>
<tr>
<td>Conventionally (Partially) Infiltrated Steels</td>
<td>327</td>
</tr>
<tr>
<td>Evaluation of Infiltrated Parts</td>
<td>329</td>
</tr>
<tr>
<td>Alloy Steels and Fully Infiltrated Steels</td>
<td>330</td>
</tr>
<tr>
<td>High-Temperature Sintering of Ferrous Powder</td>
<td>334</td>
</tr>
<tr>
<td>Metallurgy Components</td>
<td>334</td>
</tr>
<tr>
<td>Roland T. Warzel III</td>
<td>331</td>
</tr>
<tr>
<td>Sintering Stages and Effects</td>
<td>331</td>
</tr>
<tr>
<td>Improved Mechanical Properties</td>
<td>332</td>
</tr>
<tr>
<td>Improved Physical Properties</td>
<td>333</td>
</tr>
<tr>
<td>Development of a Liquid Phase</td>
<td>333</td>
</tr>
<tr>
<td>Sintering of Active Elements</td>
<td>334</td>
</tr>
<tr>
<td>Process Control Requirements</td>
<td>335</td>
</tr>
<tr>
<td>Production Sintering Practices</td>
<td>337</td>
</tr>
<tr>
<td>Roland T. Warzel III</td>
<td>337</td>
</tr>
<tr>
<td>Sintering of Ferrous Materials</td>
<td>337</td>
</tr>
<tr>
<td>Sintering Atmospheres</td>
<td>338</td>
</tr>
<tr>
<td>Iron and Iron Graphite Powder</td>
<td>339</td>
</tr>
<tr>
<td>Iron-Copper and Iron-Copper Graphite</td>
<td>341</td>
</tr>
<tr>
<td>Sintering of Alloy Steels</td>
<td>341</td>
</tr>
<tr>
<td>Sinter Hardening</td>
<td>344</td>
</tr>
<tr>
<td>High-Temperature Sintering</td>
<td>344</td>
</tr>
<tr>
<td>Powder Forged Steel</td>
<td>347</td>
</tr>
<tr>
<td>E. Ilia and W. Brian James</td>
<td>347</td>
</tr>
<tr>
<td>Material Considerations</td>
<td>347</td>
</tr>
<tr>
<td>Process Considerations</td>
<td>350</td>
</tr>
<tr>
<td>Mechanical Properties</td>
<td>355</td>
</tr>
<tr>
<td>Quality Assurance for Powder-Forced Parts</td>
<td>360</td>
</tr>
<tr>
<td>Powder Metallurgy Gears</td>
<td>362</td>
</tr>
<tr>
<td>Salvator Nigarura</td>
<td>374</td>
</tr>
<tr>
<td>Capabilities and Limitations</td>
<td>374</td>
</tr>
<tr>
<td>Gear Forms</td>
<td>375</td>
</tr>
<tr>
<td>Gear Tolerances</td>
<td>376</td>
</tr>
<tr>
<td>Gear Design and Tooling</td>
<td>376</td>
</tr>
<tr>
<td>Gear Performance</td>
<td>378</td>
</tr>
<tr>
<td>Quality Control and Inspection</td>
<td>378</td>
</tr>
<tr>
<td>Machinability of Powder Metallurgy Steels</td>
<td>384</td>
</tr>
<tr>
<td>Denis Christopherson, Jr.</td>
<td>384</td>
</tr>
<tr>
<td>The Machining Process</td>
<td>384</td>
</tr>
<tr>
<td>Machinability Measurement</td>
<td>386</td>
</tr>
<tr>
<td>Machinability Improvement</td>
<td>387</td>
</tr>
<tr>
<td>Sulfides</td>
<td>388</td>
</tr>
<tr>
<td>Metallography</td>
<td>389</td>
</tr>
<tr>
<td>Stability of Sulfides</td>
<td>390</td>
</tr>
<tr>
<td>Effects on Sintered Properties</td>
<td>390</td>
</tr>
<tr>
<td>Tool Materials</td>
<td>392</td>
</tr>
<tr>
<td>Microstructure Modification</td>
<td>393</td>
</tr>
<tr>
<td>Machining of Powder Metallurgy Materials</td>
<td>395</td>
</tr>
<tr>
<td>Denis Christopherson, Jr.</td>
<td>395</td>
</tr>
<tr>
<td>General Guidelines</td>
<td>395</td>
</tr>
<tr>
<td>Machining Guidelines</td>
<td>396</td>
</tr>
<tr>
<td>Joining Powder Metallurgy Steel Components</td>
<td>405</td>
</tr>
<tr>
<td>Peter K. Sokolowski</td>
<td>405</td>
</tr>
<tr>
<td>Fusion Methods</td>
<td>406</td>
</tr>
<tr>
<td>Solid-State Methods</td>
<td>408</td>
</tr>
<tr>
<td>Powder Metallurgy Materials for Joining</td>
<td>409</td>
</tr>
<tr>
<td>Powder Metallurgy Stainless Steels</td>
<td>411</td>
</tr>
<tr>
<td>Introduction to Powder Metallurgy Stainless Steels</td>
<td>413</td>
</tr>
<tr>
<td>Prasan K. Samal</td>
<td>413</td>
</tr>
<tr>
<td>Alloy Classification and Compositions</td>
<td>415</td>
</tr>
<tr>
<td>Prasan K. Samal</td>
<td>415</td>
</tr>
<tr>
<td>Basic Metallurgical Principles</td>
<td>415</td>
</tr>
<tr>
<td>Identification and Specifications</td>
<td>416</td>
</tr>
<tr>
<td>Characteristics and Chemical Compositions of Wrought and Powder Metallurgy Stainless Steels</td>
<td>417</td>
</tr>
<tr>
<td>Manufacture of Stainless Steel Powders</td>
<td>421</td>
</tr>
<tr>
<td>Roland T. Warzel III</td>
<td>421</td>
</tr>
<tr>
<td>Water Atomization of Stainless Steel Powders</td>
<td>421</td>
</tr>
<tr>
<td>Gas Atomization of Stainless Steel Powders</td>
<td>424</td>
</tr>
<tr>
<td>Drying, Screening, Annealing, and Lubricating</td>
<td>425</td>
</tr>
<tr>
<td>Testing for Quality Assurance</td>
<td>425</td>
</tr>
<tr>
<td>Compacting of Stainless Steel Powders</td>
<td>427</td>
</tr>
<tr>
<td>Richard R. Phillips and Prasan K. Samal</td>
<td>427</td>
</tr>
<tr>
<td>The Basic Process</td>
<td>427</td>
</tr>
<tr>
<td>Compaction Characteristics of Stainless Steel Powders</td>
<td>428</td>
</tr>
<tr>
<td>Sintering of Stainless Steels</td>
<td>433</td>
</tr>
<tr>
<td>Peter A. dePoutiloff and Prasan K. Samal</td>
<td>433</td>
</tr>
<tr>
<td>Sintering Behavior of Various Families of Stainless Steels</td>
<td>433</td>
</tr>
<tr>
<td>MPIF Material Designations</td>
<td>434</td>
</tr>
<tr>
<td>Equipment</td>
<td>434</td>
</tr>
<tr>
<td>Critical Steps in the Sintering of Stainless Steels</td>
<td>434</td>
</tr>
<tr>
<td>Atmospheres</td>
<td>436</td>
</tr>
<tr>
<td>Dimensional Change in Sintering</td>
<td>437</td>
</tr>
<tr>
<td>Secondary Operations for Powder Metallurgy Stainless Steels</td>
<td>440</td>
</tr>
</tbody>
</table>