ASM Handbook Volume 14B on sheet forming is the second of two volumes on metalworking technology, following the publication of Volume 14A on forging and bulk forming in 2005. These two volumes reflect the continuing mission of the ASM Handbook series to provide in-depth and practical engineering knowledge in areas of technological significance.

Like many major manufacturing operations, the technology of sheet-metal fabrication is being transformed in response to the competitive demands of a global economy and computer-aided engineering. Product and process design are becoming more integrated, and all stages of processing are being enhanced by computer technologies that help implement process-control strategies to reduce scrap and achieve net-shape forming capability on the shop floor. These advances involve the efforts of various technical communities, and ASM International is pleased to help disseminate their knowledge for the benefit of others in the economical manufacturing of effective products.

Thanks are extended to all the contributors and especially to Lee Semiatin, who, as Volume Editor, has championed this entire effort with his tireless devotion. Dr. Semiatin is to be congratulated and lauded for all his efforts in identifying and recruiting authors, directing the editorial activities of review and revision, and responding effectively in the development of both Volume 14A and 14B. His volunteer commitment is enormous, and we are indebted to Lee Semiatin.

Reza Abbaschian
President
ASM International

Stanley C. Theobald
Managing Director
ASM International
Policy on Units of Measure

By a resolution of its Board of Trustees, ASM International has adopted the practice of publishing data in both metric and customary U.S. units of measure. In preparing this Handbook, the editors have attempted to present data in metric units based primarily on Système International d’Unités (SI), with secondary mention of the corresponding values in customary U.S. units. The decision to use SI as the primary system of units was based on the aforementioned resolution of the Board of Trustees and the widespread use of metric units throughout the world.

For the most part, numerical engineering data in the text and in tables are presented in SI-based units with the customary U.S. equivalents in parentheses (text) or adjoining columns (tables). For example, pressure, stress, and strength are shown both in SI units, which are pascals (Pa) with a suitable prefix, and in customary U.S. units, which are pounds per square inch (psi). To save space, large values of psi have been converted to kips per square inch (ksi), where 1 ksi = 1000 psi. The metric tonne (kg·10³) has sometimes been shown in megagrams (Mg). Some strictly scientific data are presented in SI units only.

To clarify some illustrations, only one set of units is presented on artwork. References in the accompanying text to data in the illustrations are presented in both SI-based and customary U.S. units. On graphs and charts, grids corresponding to SI-based units usually appear along the left and bottom edges. Where appropriate, corresponding customary U.S. units appear along the top and right edges.

Data pertaining to a specification published by a specification-writing group may be given in only the units used in that specification or in dual units, depending on the nature of the data. For example, the typical yield strength of steel sheet made to a specification written in customary U.S. units would be presented in dual units, but the sheet thickness specified in that specification might be presented only in inches.

Data obtained according to standardized test methods for which the standard recommends a particular system of units are presented in the units of that system. Wherever feasible, equivalent units are also presented. Some statistical data may also be presented in only the original units used in the analysis.

Conversions and rounding have been done in accordance with IEEE/ASTM SI-10, with attention given to the number of significant digits in the original data. For example, an annealing temperature of 1570 °F contains three significant digits. In this case, the equivalent temperature would be given as 855 °C; the exact conversion to 854.44 °C would not be appropriate. For an invariant physical phenomenon that occurs at a precise temperature (such as the melting of pure silver), it would be appropriate to report the temperature as 961.93 °C or 1763.5 °F. In some instances (especially in tables and data compilations), temperature values in °C and °F are alternatives rather than conversions.

The policy of units of measure in this Handbook contains several exceptions to strict conformance to IEEE/ASTM SI-10; in each instance, the exception has been made in an effort to improve the clarity of the Handbook. The most notable exception is the use of g/cm³ rather than kg/m³ as the unit of measure for density (mass per unit volume).

SI practice requires that only one virgule (diagonal) appear in units formed by combination of several basic units. Therefore, all of the units preceding the virgule are in the numerator and all units following the virgule are in the denominator of the expression; no parentheses are required to prevent ambiguity.
Preface

Since the 1988 publication of Volume 14, Forming and Forging (of the 9th Edition Metals Handbook series, subsequently renamed the ASM Handbook series in 1991), advances in the forming of sheet metals have focused on a number of new or improved processes, new materials, increasing utilization of flexible-manufacturing and rapid-prototyping techniques, and the application of sophisticated process models and process-control strategies. A number of these advances have been driven by the needs of mass production in the automotive industry, but also partly by niche markets such as aerospace. Inexpensive yet powerful, computing resources have emerged as an important element in process design and control, tooling development, and product-process integration.

Innumerable configurations can be produced from sheet by various fabrication operations such as bending, stretching, deep drawing, hole-making, and flanging. These distinct manufacturing processes are performed in various combinations to produce a finished part along with considerations for material savings and manufacturing ease. Currently, improvements in computational capability are having a significant impact on the cost-effective application, integrated engineering evaluation, and robust production of sheet-metal products. The increasing utilization of process-control strategies to reduce scrap and achieve net-shape forming capability during all stages of processing is also enhanced by computer technologies implemented on the shop floor.

This Volume provides a broad overview of sheet-metal fabrication technologies and applications. The intent is to cover basic concepts and methods of sheet forming and developments in forming technology. Since the late 1980s, a number of processes have been introduced and/or undergone substantial improvement. These processes include high-production superplastic forming of aluminum, the use of tailor-welded blanks in automotive manufacturing, increasing utilization of rubber-pad (hydro-) forming, and high-velocity metal forming. Recent advances in the forming of sheet metals also include increasing utilization of flexible-manufacturing and rapid-prototyping techniques. New advances are also being made in the forming of advanced high-strength steels and magnesium alloys. In addition, the evaluation and analysis of material formability is improving with new techniques, such as stress-based forming-limit criteria.

It is hoped that this publication provides a useful reference for the many practitioners in this vital industry. Many thanks go to the contributors, who volunteered their time and expertise in this endeavor. This work would not have been possible without them.

S.L. Semiatin
Volume Editor

Reza Abbaschian
President and Trustee
University of California Riverside

Lawrence C. Wagner
Vice President and Trustee
Texas Instruments

Bhakta B. Rath
Immediate Past President and Trustee
U. S. Naval Research Laboratory

Paul L. Huber
Treasurer and Trustee
Seco/Warwick Corporation

Stanley C. Theobald
Secretary and Managing Director
ASM International

Trusted
Sue S. Baik-Kromalic
Honda of America
Christopher C. Berndt
James Cook University
Dianne Chong
The Boeing Company

Roger J. Fabian
Bodycote Thermal Processing
William E. Frazier
Naval Air Systems Command
Pradeep Goyal
Pradeep Metals Ltd.
Richard L. Kennedy
Allvac
Frederick J. Lisy
Orbital Research Incorporated
Frederick Edward Schmidt, Jr.
Engineering Systems Inc.

Jeffrey A. Hawk
(Chair 2005–; Member 1997–)
General Electric Company

Larry D. Hanke
(Vice Chair 2005–; Member 1994–)
Material Evaluation and Engineering Inc.

Viola L. Acoff (2005–)
University of Alabama

David E. Alman (2002–)
U.S. Department of Energy

Tim Cheek (2004–)
International Truck & Engine Corporation

Lichun Leigh Chen (2002–)
Engineered Materials Solutions

Craig Clauser (2005–)
Craig Clauser Engineering Consulting Inc.

William Frazier (2005–)
Naval Air Systems Command

Lee Gearhart (2005–)
Moog Inc.

Michael A. Hollis (2003–)
Delphi Corporation

Kent L. Johnson (1999–)
Engineering Systems Inc.

Ann Kelly (2004–)
Los Alamos National Laboratory

Alan T. Male (2003–)
University of Kentucky

William L. Mankins (1989–)
Metallurgical Services Inc.

Dana J. Medlin (2005–)
South Dakota School of Mines and Technology

Joseph W. Newkirk (2005–)
Metallurgical Engineering

Toby Padfield (2004–)
ZF Sachs Automotive of America

Frederick Edward Schmidt, Jr. (2005–)
Engineering Systems Inc.

Karl P. Staudhammer (1997–)
Los Alamos National Laboratory

Kenneth B. Tator (1991–)
KTA-Tator Inc.

George F. Vander Voort (1997–)
Buehler Ltd.

Previous Chairs of the ASM Handbook Committee

R.J. Austin
L.B. Case
(1931–1933) (Member 1927–1933)
T.D. Cooper
C.V. Darragh
E.O. Dixon
R.L. Dowdell
(1958–1939) (Member 1935–1939)
Henry E. Fairman
M.M. Gauthier
J.P. Gill
(1937) (Member 1934–1937)
J.D. Graham
J.F. Harper
(1923–1926) (Member 1923–1926)
C.H. Herty, Jr.
(1934–1936) (Member 1930–1936)
D.D. Huffman
J.B. Johnson
(1948–1951) (Member 1944–1951)
L.J. Korb
R.W.E. Leiter
G.V. Luerssen
(1943–1947) (Member 1942–1947)
G.N. Maniar
W.L. Mankins
(1994–1997) (Member 1989–)
J.L. McCall
W.J. Merten
(1927–1930) (Member 1923–1933)
D.L. Olson
N.E. Promisel
G.J. Shubat
W.A. Stadler
R. Ward
M.G.H. Wells
D.J. Wright
(1964–1965) (Member 1959–1967)
Authors and Contributors

Sean R. Agnew
University of Virginia

Debbie Aliya
Aliya Analytical

Brian Allen
AK Steel Corporation

Brian Baker
Special Metals Corporation

Frédéric Barlat
Alcoa Technical Center

Joseph D. Beal
The Boeing Company

William T. Becker
(deceased)

B.-A. Behrens
University of Hanover

David Berardis
Fenn Technologies

B.P. Bewlay
General Electric Global Research

Rodney Boyer
The Boeing Company

Jian Cao
Northwestern University

L.C. Chan
The Hong Kong Polytechnic University

L. Chen
Technical Materials, Inc.

Raymond Cribb
Brush Wellman Inc.

Paul Crook
Haynes International Inc.

Glenn S. Daehn
The Ohio State University

Mahmoud Y. Demeiri
FormSys, Inc.

E. Doege
(deceased)

Joseph A. Douthett
AK Steel Corporation, Inc.

H. Lee Flower
Haynes International Inc.

Peter Friedman
Ford Research Laboratory

D.U. Furrer
Ladish Company

A.K. Ghosh
University of Michigan

C.H. Hamilton
University of Virginia

Ed Herman
Creative Concepts Company, Inc.

Louis E. Huber, Jr.
Cabot Supermetals Corporation

Dennis Huffman
Timken (retired)

Kent L. Johnson
Engineering Systems Inc.

Jacob A. Kallivayalil
Alcoa Technical Center

Serope Kalpakjian
Illinois Institute of Technology (retired)

Pawel Kazanowski
Hydro Aluminum Cedar Tools

Stuart Keeler
Keeler Technologies LLC

Menachem Kimchi
Edison Welding Institute

Brad Kinsey
University of New Hampshire

Gary L. Kinzel
The Ohio State University

Dwaine Klarstrom
Haynes International Inc.

R. Kopp
Aachen University

Howard Kuhn
Consultant

G. Kurz
University of Hanover

Rein Küttner
Tallinn Technical University, Estonia

Rob Larsen
The Boeing Company

T.C. Lee
The Hong Kong Polytechnic University

Joe Lensky
Ladish Co., Inc.

Donald R. Lesuer
Lawrence Livermore National Laboratory

M. Li
The Ohio State University

Huiimin Liu
Ford Motor Company

Peter P. Liu
Eastern Illinois University

Terry Lowe
U.S. Department of Energy,
Los Alamos National Laboratory

James C. Malas
Air Force Research Laboratory

Alan Male
University of Kentucky

Frank Mandigo
Olin Corporation

Steve Matthews
Haynes International Inc.

Christopher A. Michaluk
Michaluk and Associates

Michael Miles
Brigham Young University

Matt Miller
Cornell University

Wojciech Z. Misiolek
Lehigh University

Toby Padfield
ZF Sachs Automotive of America

Henry Rack
Clemson University

Chung-Yeh Sa
General Motors

Daniel Sanders
The Boeing Company

Daniel J. Schaeffler
Engineering Quality Solutions, Inc.

Berthold Scholties
Universität Kassel

J. Schulz
Aachen University

S.L. Semiatin
Air Force Research Laboratory

Howard W. Sizik
Air Force Research Laboratory

Philip Smith
Alcoa Technical Center
Krishna Srivastava
 Haynes International Inc.
Edgar A. Starke, Jr.
 University of Virginia
Torgeir Svinning
 SINTEF, Norway
C.Y. Tang
 The Hong Kong Polytechnic University
Don Tillack
 Tillack Metallurgical Consulting
Derek Tyler
 Olin Corporation
Peter Ulintz
 Anchor Manufacturing Group Inc.

Ravi Venugopal
 Sysendes, Inc.
Lotta Lamminen Vihtonen
 Helsinki University of Technology
Evan J. Vineberg
 Engineering Quality Solutions, Inc.
Otmar Voehringer
 Universität Karlsruhe
O. Vogt
 University of Hanover
Boel Wadman
 IVF, Sweden
R.H. Wagoner
 The Ohio State University

J.F. Wang
 The Ohio State University
Jyhwen Wang
 Texas A&M University
Michael L. Wenner
 General Motors R&D Center
Cedric Xia
 Ford Research Laboratory
Jeong Whan Yoon
 Alcoa Technical Center
Gunter Zittel
 Elmag, Inc.
Contents

Introduction ... 1

Introduction to Sheet-Forming Processes

S.L. Semiatin ... 3

Historical Perspective .. 3
Classification of Sheet-Forming Processes .. 3
Process-Related Developments ... 4
Rapid Prototyping and Flexible Manufacturing Techniques 6
Materials-Related Developments ... 7
Process Simulation, Design, and Control ... 8
Future Outlook ... 9

Design for Sheet Forming

Howard Kuhn .. 11
Hole Punching ... 11
Flanging ... 12
Beads and Ribs ... 14
Large Recesses ... 14
Scrap Reduction .. 18

Shearing, Cutting, Blanking, and Piercing .. 21

Cutting Operations .. 23
Mechanical Methods of Cutting .. 23
Gas Cutting ... 24
Electric Arc Cutting .. 25
Laser Cutting ... 26
Abrasive Waterjet Cutting ... 26
Principles of Shearing, Blanking, and Piercing ... 28
Shear Action in Metalcutting .. 28
Deformation .. 29
Penetration ... 29
Clearance ... 29
Stripping Force ... 30
Shearing Force ... 30
Diameter-to-Thickness Ratios ... 33
Limitations of Punching ... 33
Die Clearances and Stripping Forces .. 33

Shearing of Sheet, Strip, and Plate

L. Chen .. 39
Straight-Knife Shearing ... 39
Rotary Shearing .. 43
Safety .. 44

Flattening, Leveling, Slitting, and Shearing of Coiled Product

L. Chen .. 46
Flattening and Leveling ... 46
Flatteners and Levelers ... 47

Principle of Shape Correction .. 48
Shape Corrections .. 49
Slitting ... 50
Cut-to-Length Lines ... 54

Selection of Materials for Shearing, Blanking, and Piercing

Tools ... 57
Shearing Process ... 57
Wear .. 57
Wear Control .. 58
Shear-Blade Tool Steels ... 61
Materials for Machine Knives ... 63
Selection of Material for Blanking and Piercing Dies 65

Trimming Operations .. 69
Analysis of Parts to be Trimmed .. 69
Selection of Trimming Dies ... 69
Rough and Finish Trimming ... 71
Construction Details of Trimming Dies .. 71
Selection of Presses for Trimming ... 72
Scrap Handling ... 72
Material Handling in Trimming .. 72
Combined Operations ... 73

Other Cutting Methods

Oxyfuel Gas Cutting ... 74
Principles of Operation .. 74
Process Capabilities .. 74
Properties of Fuel Gases .. 75
Fuel Types ... 76
Effect of Oxyfuel Cutting on Base Metal .. 79
Equipment .. 81
Starting the Cut ... 84
Light Cutting .. 84
Medium Cutting .. 85
Heavy Cutting ... 85
Stack Cutting .. 86
Preparation of Weld Edges ... 87
Applicable Shapes ... 88
Gas Cutting versus Alternate Methods ... 90
Close-Tolerance Cutting .. 91
Oxyfuel Gouging .. 91
Other Gas Cutting Methods ... 92
Safety .. 95

Electric Arc Cutting ... 96
Plasma Arc Cutting ... 96
Air-Carbon Arc Cutting .. 104
Other Electric Arc Cutting Methods .. 109
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection and Use of Lubricants in Forming of Sheet Metal</td>
<td>248</td>
</tr>
<tr>
<td>Tooling and Lubrication for Forming of Sheet, Strip, and Plate</td>
<td>239</td>
</tr>
<tr>
<td>Press Feeders</td>
<td>226</td>
</tr>
<tr>
<td>Designs-Set Recommendations</td>
<td>225</td>
</tr>
<tr>
<td>Presses Used with Progressive Dies</td>
<td>291</td>
</tr>
<tr>
<td>Factors in Selecting Progressive Dies</td>
<td>287</td>
</tr>
<tr>
<td>Principles and Features of Orbital-Movement</td>
<td>281</td>
</tr>
<tr>
<td>EDM</td>
<td>282</td>
</tr>
<tr>
<td>Electrochemical Machining</td>
<td>285</td>
</tr>
<tr>
<td>Forming Processes for Sheet, Strip and Plate</td>
<td>293</td>
</tr>
<tr>
<td>Bending of Sheet Metal</td>
<td>295</td>
</tr>
<tr>
<td>Bending Theory</td>
<td>295</td>
</tr>
<tr>
<td>Bending Calculations</td>
<td>297</td>
</tr>
<tr>
<td>Bending Operations</td>
<td>298</td>
</tr>
<tr>
<td>Stress-Strain Behavior in Bending</td>
<td>299</td>
</tr>
<tr>
<td>Bendability</td>
<td>305</td>
</tr>
<tr>
<td>Press Brakes</td>
<td>307</td>
</tr>
<tr>
<td>Selection of Tool Material</td>
<td>312</td>
</tr>
<tr>
<td>Procedures for Specific Shapes</td>
<td>314</td>
</tr>
<tr>
<td>Effect of Work Metal Variables on Results</td>
<td>315</td>
</tr>
<tr>
<td>Dimensional Accuracy</td>
<td>316</td>
</tr>
<tr>
<td>Press-Brake Forming</td>
<td>307</td>
</tr>
<tr>
<td>Principles</td>
<td>307</td>
</tr>
<tr>
<td>Applicability</td>
<td>307</td>
</tr>
<tr>
<td>Rotary Bending</td>
<td>312</td>
</tr>
<tr>
<td>Selection of Machine</td>
<td>308</td>
</tr>
<tr>
<td>Dies and Punches</td>
<td>309</td>
</tr>
<tr>
<td>Special Dies and Punches</td>
<td>310</td>
</tr>
<tr>
<td>Dies for Shearing, Lancing, Blanking, Piercing, and Notching</td>
<td>312</td>
</tr>
<tr>
<td>Deep Drawing</td>
<td>319</td>
</tr>
<tr>
<td>Mahmoud Y. Demeri</td>
<td>319</td>
</tr>
<tr>
<td>Fundamentals of Drawing</td>
<td>320</td>
</tr>
<tr>
<td>Drawability</td>
<td>320</td>
</tr>
<tr>
<td>Defects in Drawing</td>
<td>321</td>
</tr>
<tr>
<td>Presses</td>
<td>321</td>
</tr>
<tr>
<td>Dies</td>
<td>323</td>
</tr>
<tr>
<td>Effects of Process Variables in Deep Drawing</td>
<td>324</td>
</tr>
<tr>
<td>Materials for Deep Drawing</td>
<td>328</td>
</tr>
<tr>
<td>Redrawing Operations</td>
<td>329</td>
</tr>
<tr>
<td>Ironing</td>
<td>330</td>
</tr>
</tbody>
</table>

© 2006 ASM International. All Rights Reserved.
Forming of Bar, Tube, and Wire .. 443

Shearing of Bars and Bar Sections .. 445
 Applicability .. 445
 Punching and Shear Machines ... 446
 Shear Blades ... 448
 Blade Design and Production Practice .. 449
 Double-Cut versus Single-Cut Shearing ... 450
 Nondistorted, Burr-Free Cuts .. 451
 Shearing of Specific Forms ... 451
 Materials Handling ... 453
 Impact Cutoff Machines .. 454
Bending of Bars and Bar Sections .. 456
 Bending Methods .. 456
 Bending Machines .. 457
 Tools ... 459
 Bend Allowance ... 460
 Lubrication .. 460
Bending and Forming of Tubing ... 461
 Selection of Bending Method .. 461
 Tools ... 462
 Bending Tubing with a Mandrel ... 463
 Bending Tubing without a Mandrel .. 465
 Machines .. 465
 Hot Bending .. 466
 Tube Stock ... 468
 Bending Thin-Wall Tubes ... 469
 Lubrication for Tube Bending .. 470
 Tube Forming .. 470
Straightening of Bars, Shapes, and Long Parts 472
 Material Displacement Straightening ... 472
 Straightening by Heating ... 473
 Straightening in Presses .. 474
 Parallel-Roll Straightening .. 476
 Rotary Straighteners ... 477
 Automatic Press Roll Straightening ... 479
 Moving-Insert Straightening .. 479
 Parallel-Rail Straightening .. 480
 Epicyclic Straightening .. 480
 Straightening in Bar Production .. 481
Straightening of Tubing .. 483
 Effect of Tubing Material .. 483
 Control of Straightening Pressure .. 483
 Press Straightening ... 483
 Parallel-Roll Straightening .. 484
 Two-Roll Rotary Straightening ... 484

Forming of Wire

David Berardis .. 487
 Effect of Material Condition .. 487
 Rolling of Wire in a Turks Head Machine .. 487
 Spring Coiling .. 488
 Manual and Power Bending .. 490
 Forming in Multiple-Slide Machines .. 490
 Production Problems and Solutions .. 490
 Lubricants ... 490

Sheet Forming of Specific Metals ... 493

Forming of Carbon Steels

Mahmoud Y. Demeri ... 495
 Presses and Dies .. 495
 Lubrication .. 499
 Sheet Steels .. 500
 Formability of Steels .. 503
 Effects of Alloying .. 507
 Effects on Formability .. 509
 Bending ... 512
 Press Forming .. 518
 Shells ... 524

Forming of Advanced High-Strength Steels

Mahmoud Y. Demeri ... 530
 Classification of HSS and AHSS ... 530
 Review of HSS and AHSS Grades .. 531
 Properties of HSS and AHSS ... 532
 HSS and AHSS Automotive Applications 534
 Stamping Issues and Forming Guidelines for HSS and AHSS 535
 Advantages and Disadvantages of Using HSS and AHSS 537

Forming of Steel Tailor-Welded Blanks ... 539
 Welding Methods for Tailored Blanks .. 539
 Selection of Welding Method ... 539
 Special Considerations for Welding and Weld Design 542
 Formability Considerations ... 543
 Draw, Stretch, and Bend Considerations 544
 Die and Press Considerations .. 544

Press Forming of Coated Steel

Brian Allen ... 547
 Coated Steels .. 547
 Zinc-Coated Steels .. 547
 Aluminum-Coated Steels ... 550
 Tin-Coated Steels .. 551
 Terne-Coated Steels ... 551
 Nickel, Copper, and Chromium Plating .. 551
 Organic-Coated Steels .. 551

Forming of Steel Strip in Multiple-Slide Machines 554
 Applicability .. 554
 Multiple-Slide Machines ... 554
 Blanking ... 556
 Forming .. 557