Foreword

This work, *Corrosion: Environments and Industries*, is application driven. The best practices in segments of industry with respect to materials selection, protection of materials, and monitoring of corrosion are presented. The challenges of local environments encountered within these industries, as well as large-scale environmental challenges, are documented. The choice of solutions to these challenges can be found.

Just as the environment affects materials, so also corrosion and its by-products affect the immediate environment. Nowhere is the immediate effect of more concern than in biomedical implants. We are pleased with the new information shared by experts in this field.

As we recognize the energy costs of producing new materials of construction, the creation of engineered systems that will resist corrosion takes on added importance. The importance and costs of maintenance have been discussed for many of the industrial segments—aviation, automotive, oil and gas pipeline, chemical, and pulp and paper industries, as well as the military. The consequences of material degradation are addressed as the service temperatures of materials are pushed higher for greater efficiency in energy conversion. As engineered systems are made more complex and the controlling electronics are made smaller, the tolerance for any corrosion is lessened.

ASM International is deeply indebted to the Editors, Stephen D. Cramer and Bernard S. Covino, Jr., who envisioned the revision of the landmark 1987 *Metals Handbook*, 9th edition, Volume 13. The energy they sustained throughout this project and the care they gave to every article has been huge. The resulting three Volumes contain 281 articles, nearly 3000 pages, 3000 figures, and 1500 tables—certainly impressive statistics. Our Society is as impressed and equally grateful for the way in which they recruited and encouraged a community of corrosion experts from around the world and from many professional organizations to volunteer their time and ability.

We are grateful to the 200 authors and reviewers who shared their knowledge of corrosion and materials for the good of this Volume. They are listed on the next several pages. And again, thanks to the contributors to the preceding two Volumes and the original 9th edition *Corrosion* Volume.

Thanks also go to the members of the ASM Handbook Committee for their involvement in this project and their commitment to keep the information of the *ASM Handbook* series current and relevant to the needs of our members and the technical community. Finally, thanks to the ASM editorial and production staff for the overall result.

Reza Abbaschian
President
ASM International

Stanley C. Theobald
Managing Director
ASM International
Policy on Units of Measure

By a resolution of its Board of Trustees, ASM International has adopted the practice of publishing data in both metric and customary U.S. units of measure. In preparing this Handbook, the editors have attempted to present data in metric units based primarily on Système International d’Unités (SI), with secondary mention of the corresponding values in customary U.S. units. The decision to use SI as the primary system of units was based on the aforementioned resolution of the Board of Trustees and the widespread use of metric units throughout the world.

For the most part, numerical engineering data in the text and in tables are presented in SI-based units with the customary U.S. equivalents in parentheses (text) or adjoining columns (tables). For example, pressure, stress, and strength are shown both in SI units, which are pascals (Pa) with a suitable prefix, and in customary U.S. units, which are pounds per square inch (psi). To save space, large values of psi have been converted to kips per square inch (ksi), where 1 ksi = 1000 psi. The metric tonne (kg \(\times 10^3 \)) has sometimes been shown in megagrams (Mg). Some strictly scientific data are presented in SI units only.

To clarify some illustrations, only one set of units is presented on artwork. References in the accompanying text to data in the illustrations are presented in both SI-based and customary U.S. units. On graphs and charts, grids corresponding to SI-based units usually appear along the left and bottom edges. Where appropriate, corresponding customary U.S. units appear along the top and right edges.

Data pertaining to a specification published by a specification-writing group may be given in only the units used in that specification or in dual units, depending on the nature of the data. For example, the typical yield strength of steel sheet made to a specification written in customary U.S. units would be presented in dual units, but the sheet thickness specified in that specification might be presented only in inches.

Data obtained according to standardized test methods for which the standard recommends a particular system of units are presented in the units of that system. Wherever feasible, equivalent units are also presented. Some statistical data may also be presented in only the original units used in the analysis.

Conversions and rounding have been done in accordance with IEEE/ASTM SI-10, with attention given to the number of significant digits in the original data. For example, an annealing temperature of 1570 °F contains three significant digits. In this case, the equivalent temperature would be given as 855 °C; the exact conversion to 854.44 °C would not be appropriate. For an invariant physical phenomenon that occurs at a precise temperature (such as the melting of pure silver), it would be appropriate to report the temperature as 961.93 °C or 1763.5 °F. In some instances (especially in tables and data compilations), temperature values in °C and °F are alternatives rather than conversions.

The policy of units of measure in this Handbook contains several exceptions to strict conformance to IEEE/ASTM SI-10; in each instance, the exception has been made in an effort to improve the clarity of the Handbook. The most notable exception is the use of g/cm³ rather than kg/m³ as the unit of measure for density (mass per unit volume).

SI practice requires that only one virgule (diagonal) appear in units formed by combination of several basic units. Therefore, all of the units preceding the virgule are in the numerator and all units following the virgule are in the denominator of the expression; no parentheses are required to prevent ambiguity.
Corrosion, while silent and often subtle, is probably the most significant cause of physical deterioration and degradation in man-made structures. The 2004 global direct cost of corrosion, representing costs experienced by owners and operators of manufactured equipment and systems, was estimated to be $900 billion United States dollars (USD) annually, or 2.0% of the $50 trillion (USD) world gross domestic product (GDP) (Ref 1). The 2004 global indirect cost of corrosion, representing costs assumed by the end user and the overall economy, was estimated to be $940 billion (USD) annually (Ref 1). On this basis, the total cost of corrosion to the global economy in 2004 was estimated to be approximately $1.9 trillion (USD) annually, or 3.8% of the world GDP. The largest contribution to this cost comes from the United States at 31%. The next largest contributions were Japan, 6%; Russia, 6%; and Germany, 5%.

ASM Handbook Volume 13C, Corrosion: Environments and Industries is the third and final volume of the three-volume update, revision, and expansion of Metals Handbook, 9th edition, Volume 13, Corrosion, published in 1987. The first volume—Volume 13A, Corrosion: Fundamentals, Testing, and Protection—was published in 2003. The second volume—Volume 13B, Corrosion: Materials—was published in 2005. These three volumes together present the current state of corrosion knowledge, the efforts to mitigate corrosion’s effects on society’s structures and economies, and a perspective on future trends in corrosion prevention and mitigation. Metals remain the primary focus of the Handbook. However, nonmetallic materials occupy a more prominent position, reflecting their wide and effective use to solve problems of corrosion and their frequent use with metals in complex engineering systems. Wet (or aqueous) corrosion remains the primary environmental focus, but dry (or gaseous) corrosion is also addressed, reflecting the increased use of elevated-or high-temperature operations in engineering systems, particularly energy-related systems, where corrosion and oxidation are important considerations.

Volume 13C recognizes, as did Volumes 13A and 13B, the diverse range of materials, environments, and industries affected by corrosion, the global reach of corrosion practice, and the levels of technical activity and cooperation required to produce cost-effective, safe, and environmentally-sound solutions to materials problems. As we worked on this project, we marveled at the spread of corrosion technology into the many and diverse areas of engineering, industry, and human activity. It attests to the effectiveness of the pioneers of corrosion research and education, and of the organizations they helped to create, in communicating the principles and experience of corrosion to an ever-widening audience. Over 50% of the articles in Volume 13C are new. Looking back over the three volumes, 45% of the articles are new to the revised Handbook, reflecting changes occurring in the field of corrosion over the intervening 20 years. Authors from 14 countries contributed articles to the three Handbook volumes.

Volume 13C is organized into two major Sections addressing the performance of materials in specific classes of environments and their performance in the environments created by specific industries. These Sections recognize that materials respond to the laws of chemistry and physics and that, within the constraints of design and operating conditions, corrosion can be minimized to provide economic, environmental, and safety benefits.

The first Section is “Corrosion in Specific Environments,” addressing distinct classes of environments where knowledge of the general attributes of the environment provides a “generic” framework for understanding and solving corrosion problems. By the nature of this approach, solutions to problems of corrosion performance and corrosion protection are viewed as spanning industries. The specific environments addressed in Volume 13C are fresh water, marine (both atmospheric and aqueous), underground, and military, with an eclectic mix of other environments included under specialized environments.

The second Section is “Corrosion in Specific Industries,” addressing corrosion performance and corrosion protection in distinct environments created by specific industries. The specific industries addressed in Volume 13C are nuclear power, fossil energy and alternative fuels, petroleum and petrochemical, land transportation, commercial aviation, microelectronics, chemical processing, pulp and paper, food and beverage, pharmaceutical and medical technology, building, and mining and mineral processing. Corrosion issues in the energy sector receive considerable attention in this Section. In addition, there is substantial overlap between this Section and topics addressed in military environments in the first Section.

Supporting material is provided at the back of the Handbook. A “Corrosion Rate Conversion” includes conversions in both nomograph and tabular form. The “Metric Conversion Guide” gives conversion factors for common units and includes SI prefixes. “Abbreviations and Symbols” provides a key to common acronyms, abbreviations, and symbols used in the Handbook.

Many individuals contributed to Volume 13C. In particular, we wish to recognize the efforts of the following individuals who provided leadership in organizing subsections of the Handbook (listed in alphabetical order):

<table>
<thead>
<tr>
<th>Chairperson</th>
<th>Subsection title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alain A. Adorlolo</td>
<td>Corrosion in Commercial Aviation</td>
</tr>
<tr>
<td>Vinod S. Agarwala</td>
<td>Corrosion in Military Environments</td>
</tr>
<tr>
<td>Hira Aihwa</td>
<td>Corrosion in the Chemical Processing Industry</td>
</tr>
<tr>
<td>Denis A. Aylor</td>
<td>Corrosion in Marine Environments</td>
</tr>
<tr>
<td>Bernard S. Covino, Jr.</td>
<td>Corrosion in Specialized Environments</td>
</tr>
<tr>
<td>Stephen D. Cramer</td>
<td>Corrosion in Fresh Water Environments</td>
</tr>
<tr>
<td>Hira Ahluwalia</td>
<td>Corrosion in Specialized Environments</td>
</tr>
<tr>
<td>Harry Dykstra</td>
<td>Corrosion in the Petroleum and Petrochemical Industry</td>
</tr>
<tr>
<td>Dawn Eden</td>
<td>Corrosion in the Nuclear Power Industry</td>
</tr>
<tr>
<td>Barry Gordon</td>
<td>Corrosion in the Land Transportation Industries</td>
</tr>
<tr>
<td>Donald L. Jordan</td>
<td>Corrosion in the Petroleum and Petrochemical Industry</td>
</tr>
<tr>
<td>Russell Kane</td>
<td>Corrosion in the Mining and Metal Processing Industries</td>
</tr>
<tr>
<td>Brajendra Mishra</td>
<td>Corrosion in the Food and Beverage Industry</td>
</tr>
<tr>
<td>Bert Moniz</td>
<td>Corrosion in the Microelectronics Industries</td>
</tr>
<tr>
<td>Seshu Pabbisetty</td>
<td>Corrosion in Underground Environments</td>
</tr>
<tr>
<td>Kevin T. Parker</td>
<td>Corrosion in the Fossil and Alternative Fuel Industries</td>
</tr>
<tr>
<td>Larry Paul</td>
<td>Corrosion in Marine Environments</td>
</tr>
<tr>
<td>Robert L. Ruedisueli</td>
<td>Corrosion in the Building Industry</td>
</tr>
</tbody>
</table>

These knowledgeable and dedicated individuals generously devoted considerable time to the preparation of the Handbook. They were joined in this effort by more than 200 authors who contributed their expertise and creativity in a collaboration to write and revise the articles in the Handbook, and
by the many reviewers of their articles. These volunteers built on the contributions of earlier Handbook authors and reviewers who provided the solid foundation on which the present Handbook rests.

For articles revised from the 1987 edition, the contribution of the previous author is acknowledged at the end of the article. This location in no way diminishes their contribution or our gratitude. Authors responsible for the current revision are named after the title. The variation in the amount of revision is broad. The many completely new articles presented no challenge for attribution, but assigning fair credit for revised articles was more problematic. The choice of presenting authors’ names without comment or with the qualifier “Revised by” is solely the responsibility of the ASM staff.

We thank ASM International and the ASM staff for their skilled support and valued expertise in the production of this Handbook. In particular, we thank Charles Moosbrugger, Gayle Anton, Diane Grubbs, and Scott Henry for their encouragement, tactful diplomacy, and many helpful discussions. We are most grateful to the National Energy Technology Laboratory (formerly the Albany Research Center), U.S. Department of Energy, for the support and flexibility in our assignments that enabled us to participate in this project. We especially thank our supervisors, Jeffrey A. Hawk and Cynthia A. Powell, for their gracious and generous encouragement throughout the project.

Stephen D. Cramer, FNACE
Bernard S. Covino, Jr., FNACE
National Energy Technology Laboratory
U.S. Department of Energy

REFERENCE

Reza Abbaschian
President and Trustee
University of California Riverside

Lawrence C. Wagner
Vice President and Trustee
Texas Instruments

Bhakta B. Rath
Immediate Past President and Trustee
U.S. Naval Research Laboratory

Paul L. Huber
Treasurer and Trustee
Seco/Warwick Corporation

Stanley C. Theobald
Secretary and Managing Director
ASM International

Trustees

Sue S. Baik-Kromalic
Honda of America

Christopher C. Berndt
James Cook University

Dianne Chong
The Boeing Company

Roger J. Fabian
Bodycote Thermal Processing

William E. Frazier
Naval Air Systems Command

Pradeep Goyal
Pradeep Metals Ltd.

Richard L. Kennedy
Allvac

Frederick J. Lisy
Orbital Research Incorporated

Frederick Edward Schmidt, Jr.
Engineering Systems Inc.

Jeffrey A. Hawk
(Chair 2005–; Member 1997–)
General Electric Company

Larry D. Hanke
(Vice Chair 2005–; Member 1994–)
Material Evaluation and Engineering Inc.

Viola L. Acoff (2005–)
University of Alabama

David E. Alman (2002–)
U.S. Department of Energy

Tim Cheek (2004–)
International Truck & Engine Corporation

Lichun Leigh Chen (2002–)
Engineered Materials Solutions

Craig Clauser (2005–)
Craig Clauser Engineering Consulting Inc.

William Frazier (2005–)
Naval Air Systems Command

Lee Gearhart (2005–)
Moog Inc.

Michael A. Hollis (2003–)
Delphi Corporation

Kent L. Johnson (1999–)
Engineering Systems Inc.

Ann Kelly (2004–)
Los Alamos National Laboratory

Alan T. Male (2003–)
University of Kentucky

William L. Mankins (1989–)
Metallurgical Services Inc.

Dana J. Medlin (2005–)
South Dakota School of Mines and Technology

Joseph W. Newkirk (2005–)
Metallurgical Engineering

Toby Padfield (2004–)
ZF Sachs Automotive of America

Frederick Edward Schmidt, Jr. (2005–)
Engineering Systems Inc.

Karl P. Staudhammer (1997–)
Los Alamos National Laboratory

Kenneth B. Tator (1991–)
KTA-Tator Inc.

George F. Vander Voort (1997–)
Buehler Ltd.

Previous Chairs of the ASM Handbook Committee

R.J. Austin

L.B. Case
(1931–1933) (Member 1927–1933)

T.D. Cooper

R.L. Dowdell (1938–1939) (Member 1935–1939)

J.F. Harper (1923–1926) (Member 1923–1926)

C.H. Herty, Jr. (1934–1936) (Member 1930–1936)

J.B. Johnson (1948–1951) (Member 1944–1951)

G.V. Luerssen (1943–1947) (Member 1942–1947)

W.L. Mankins (1994–1997) (Member 1989–)

W.J. Merten (1927–1930) (Member 1923–1933)

D.J. Wright (1964–1965) (Member 1959–1967)
Authors and Contributors

Alain A. Adjorlolo
The Boeing Company

Vinod S. Agarwala
Naval Air Systems Command, U.S. Navy

Hira S. Ahluwalia
Material Selection Resources, Inc.

Peter L. Andresen
General Electric Global Research

Zhijun Bai
Syracuse University

Wate Bakker
Electric Power Research Institute

Donald E. Bardsley
Sulzer Process Pumps Inc.

John A. Beavers
CC Technologies

Graham Bell
M.J. Schiff & Associates

J.E. Benfer
NAVAIR Materials Engineering Competency

David Bennett
Corrosion Probe Inc.

Henry L. Bernstein
Gas Turbine Materials Association

James Brandt
Galvotec Corrosion Services

S.K. Brubaker
E.L. Du Pont de Nemours & Company, Inc.

Sophie J. Bullard
National Energy Technology Laboratory

Kirk J. Bundy
Tulane University

Jeremy Busby
University of Michigan

Sridhar Canumalla
Nokia Enterprise Systems

Clifton M. Carey
American Dental Association Foundation

Bryant “Web” Chandler
Greenman Pedersen, Inc.

Norm Clayton
Naval Surface Warfare Center, Carderock Division

M. Colavita
Italian Air Force

Everett E. Collier
Consultant

Pierre Combrade
Framatome ANP

Greg Courval
Alcan International Limited

Bernard S. Covino, Jr.
National Energy Technology Laboratory

William Cox
Corrosion Management Ltd.

Stephen D. Cramer
National Energy Technology Laboratory

J.R. Crum
Special Metals Corporation

Chester M. Dacres
DACCO SCI, Inc.

Phillip Daniel
Babcoc & Wilcox Company

Michael Davies
Cariad Consultants

Stephen C. Dexter
University of Delaware

James R. Divine
ChemMet, Ltd., PC

Joe Douthett
AK Research

Harry Dyksra
Acreun

Dawn C. Eden
Honeywell Process Solutions

Teresa Elliott
City of Portland, Oregon

Paul Eyre
DuPont

F. Peter Ford
General Electric Global Research (retired)

Aleksui V. Gershun
Prestone Products

Jeremy L. Gilbert
Syracuse University

William J. Gilbert
Branch Environmental Corp.

Barry M. Gordon
Structural Integrity Associates, Inc.

R.D. Granata
Florida Atlantic University

Stuart L. Greenberger
Bureau Water Works, City of Portland, Oregon

Richard B. Griffin
Texas A&M University

L. Carl Handsy
U.S. Army Tank-Automotive & Armaments Command

Gary Hanvy
Texas Instruments

William H. Hartt
Florida Atlantic University

Robert H. Heidersbach
Dr. Rust, Inc.

Drew Hevé
El Paso Corporation

Gordon R. Holcomb
National Energy Technology Laboratory

W. Brian Holtsbaurn
CC Technologies Canada, Ltd.

Ronald M. Horn
General Electric Nuclear Energy

Jack W. Horvath
HydroChem Industrial Services, Inc.

Wally Huijbregts
Huijbregts Corrosion Consultancy

Herbert S. Jennings
DuPont

David Johnson
Galvotec Corrosion Services

Otakar Jonas
Jonas, Inc.

D.L. Jordan
Ford Motor Company

Russell D. Kane
Honeywell Process Solutions

Ernest W. Klechka, Jr.
CC Technologies
Neil G. Thompson
CC Technologies

Jack Tinnea
Tinnea & Associates, LLC

Arthur H. Tuthill
Tuthill Associates

John Tverberg
Metals and Materials Consulting Engineers

Jose L. Villalobos
V&A Consulting Engineers

Puligandla Viswanadham
Nokia Research Center

Nicholas Warchol
U.S. Army ARDEC

Gary S. Was
University of Michigan

Angela Wensley
Angela Wensley Engineering

Paul K. Whicraft
Rolled Alloys

Peter M. Woyciesjes
Prestone Products

Zhenguo G. Yang
Pacific Northwest National Laboratory

Te-Lin Yau
Yau Consultancy

Lyle D. Zardiackas
University of Mississippi Medical Center

Shi Hua Zhang
DuPont
Reviewers

Ralph Adler
U.S. Army

Hira Ahluwalia
Material Selection Resources, Inc.

Todd Allen
University of Wisconsin

Anton Banweg
Nalco Company

Sean Barnes
DuPont

Gregory A. Bates
Solae Company

Francesco Bellucci
University of Naples “Federico II”

Ron Bianchetti
East Bay Municipal Utility District

Timothy Bieri
BP

Francine Bovard
Alcoa

Robert L. Bratton
Nuclear Materials Disposition and Engineering

Mike Bresney
AGT

Stanley A. Brown
FDA

Stephen K. Brubaker
DuPont

Kirk J. Bundy
Tulane University

Juan Bustillos
Dow Chemical

Gary M. Carinci
TMR Stainless

Tom Chase
Chase Art Services

Tim Cheek
International Truck & Engine Corp.

Lichun Leigh Chen
Engineered Materials Solutions

Jason A. Cline
Spectral Sciences, Inc.

Desmond C. Cook
Old Dominion University

Thomas Cordea
International Truck and Engine Corporation

Robert A. Cottis
UMIST

Irv Cotton
Arthur Freedman Associates, Inc.

Bruce Craig
MetCorr

Larry Craigie
American Composites Manufacturers Association

Jim Crum
Special Metals Corporation

Phil L. Daniel
Babcock & Wilcox

Craig V. Darragh
The Timken Company

Chris Dash
Conoco Phillips Alaska, Inc.

Michael Davies
CARIAD Consultants

Guy D. Davis
DACCO SCI, Inc.

Sheldon Dean
Dean Corrosion Technology

John Devaney
Hi-Rel Laboratories, Inc.

John B. Dion
BAE Systems

John Deseji
Synthes (USA)

Roger Dolan
Dolan Environmental Services, Inc.

Gary Doll
The Timken Company

David E. Dombrowski
Los Alamos National Laboratory

R. Barry Dooley
Electric Power Research Institute

Timothy Eckert
Electric Power Research Institute

Dave Eden
InterCorr International

Peter Elliott
Corrosion and Materials Consultancy, Inc.

Henry “Ed” Fairman
Cincinnati Metallurgical Consultants

Robert Filipek
AGH University of Science and Ceramics

Brian J. Fitzgerald
ExxonMobil Chemical Company

John Fitzgerald
ExxonMobil Chemical Company

Gerald S. Frankel
The Ohio State University

Peter Furrer
Novelis Technology AG

Brian Gleeson
Iowa State University

John J. Goetz
Thielsch Engineering

Martha Goodway
Smithsonian Center for Materials Research and Education

Gary Griffith
Mechanical Dynamics & Analysis, LLC

Carol Grissom
SCMRE

John Grubb
Allegheny Ludlum Technical Center

Charlie Hall
Mears Group

Nadim James Hallab
Rush University Medical Center

Larry D. Hanke
Materials Evaluation and Engineering, Inc.

Jeffrey A. Hawk
General Electric Company

M. Gwyn Hocking
Imperial College London

Paul Hoffman
CIV NAVAIR

Mike Holly
General Motors Corp.
Glenn T. Hong
General Atomics, San Diego, CA

Merv Howells
Honeywell Airframe Systems

Fred H. Hua
Bechtel SAIC Co., LLC

Dennis Huffman
The Timken Company

Kumar Jata
CIV USAF AFRL/MILL

Carol Jeffcoat
Honeywell Airframe Systems

David Jensen
Eli Lilly and Company

Anders Jenssen
Studsvik Nuclear AB, Sweden

Paul Jett
Smithsonian Institute

Randy C. John
Shell Global Solutions (US) Inc.

Kent Johnson
Engineering Systems Inc.

Joanne Jones-Meehan
Naval Research Laboratory

Donald L. Jordan
North American Engineering

Robert Kain
LaQue Center for Corrosion

Don Kelley
Dow Chemical

Srinivasan Kesavan
FMC Corporation

Naeem A. Khan
Saudi Arabian Oil Company

Jonathan K. Klopman
Marine Surveyor NAMS-CMS

Ernest Klechka
CC Technologies

David Kolman
U.S. Department of Energy
Los Alamos National Laboratory

Lou Koszewski
U.S. Tank Protectors Inc.

David Kroon
Corrpro Companies

Roger A. LaBoube
University of Missouri-Rolla

Gregg D. Larson
Exelon Nuclear

Kevin Lawson
Petrofac Facilities Management Ltd.

Thomas W. Lee
Jabil Circuit, Inc.

William LeVan
Cast Iron Soil Pipe Institute

E.L. Liening
Dow Chemical

Scott Lillard
U.S. Department of Energy
Los Alamos National Laboratory

Huimin Liu
Ford Motor Company

Gary A. Lorettisch
Puckorius & Associates, Inc.

Stephen Lowell
Defense Standardization Program Office

Digby MacDonald
Pennsylvania State University

William L. Mankins
Metallurgical Services Inc.

Florian B. Mansfeld
University of Southern California

William N. Matulewicz
Wincon Technologies, Inc.

Craig Matzdorf
U.S. Navy

Graham McCartney
University of Nottingham

Bruce McMordie
Sermatech

Gerald H. Meier
University of Pittsburgh

Joseph T. Menke
U.S. Army TACOM

Ronald E. Mizia
Idaho National Engineering &
Environmental Laboratory

Raymond W. Monroe
Steel Founders’ Society of America

Jean Montemarano
Naval Surface Warfare Center, Carderock
Division

Robert E. Moore
Washington Group International

Sandra Morgan
International Truck and Engine
Corporation

Bill Mullis
Aberdeen Test Center

M.P. Sukumaran Nair
FACT, Ltd.

Larry Nelson
GE Global Research Center

Karthik H. Obba
National Ready-Mixed Concrete
Association

David Olson
Colorado School of Mines

Michael R. Ostermiller
Corrosion Engineering

Toby V. Padfield
ZF Sachs Automotive of America

Larry Paul
ThysenKrupp VDM USA Inc.

Steven J. Pawel
U.S. Department of Energy
Oak Ridge National Laboratory

Fred Pettit
University of Pittsburgh

G. Louis Powell
Y-12 National Security Complex

Raül Rebak
Lawrence Livermore National Laboratory

Michael Renner
Bayer Technology Services GmbH

Chris Robbins
Health & Safety Executive

Elwin L. Rooy
Elwin L. Rooy and Associates

Marvin J. Rudolph
DuPont

Brian Saldnaha
DuPont

Srерranganapatam Sampath
Army Research Laboratory

Philip J. Samulewicz
Ambiant Air Quality Services, Inc.

B.J. Sanders
BJS and Associates

Jeff Sarver
The Babcock & Wilcox Company

Frederick Edward Schmidt, Jr.
Engineering Systems Inc.

Michael Schock
U.S. Environmental Protection Agency

Robert J. Shaffer
DaimlerChrysler Corporation

C. Ramadeva Shastry
International Steel Group, Inc.

Robert W. Shaw
U.S. Army Research Office

Theresa Simpson
Bethlehem Steel Corp.

Robert Smallwood
Det Norske Veritas

Vernon L. Snoeyink
University of Illinois

Donald Snyder
Atotech R & D Worldwide

Gerard Sorell
G. Sorell Consulting Services

Andy Spisak
EME Associates

David L. Sponseller
OMNI Metals Laboratory, Inc.
Contents

Corrosion in Specific Environments ... 1

Introduction to Corrosion in Specific Environments

Stephen D. Cramer ... 5

Corrosion in Freshwater Environments .. 5

Corrosion in Marine Environments .. 5

Corrosion in Underground Environments 5

Corrosion in Military Environments .. 6

Corrosion in Specialized Environments 7

Corrosion in Fresh Water Environments

Corrosion in Potable Water Distribution and Building Systems

Windsor Sung ... 8

Theoretical Considerations .. 8

Mitigation against Corrosion ... 10

Additional Considerations .. 11

Corrosion in Service Water Distribution Systems

K. Anthony Selby .. 12

Typical System Designs .. 12

Typical Water Qualities .. 13

Corrosion Mechanisms in Service Water Systems 13

Corrosion Challenges in Service Water Systems 13

Corrosion Control in Service Water Systems 14

Deposit Control .. 14

Rouging of Stainless Steel in High-Purity Water

John C. Tverberg ... 15

Pharmaceutical Waters .. 15

Chlorides .. 16

Passive Layer .. 17

Surface Finish .. 18

Rouge Classification .. 18

Castings .. 20

Cleaning and Repassivation .. 21

Corrosion in Wastewater Systems

Jose L. Villalobos, Graham Bell .. 23

Predesign Surveys and Testing .. 23

Material Considerations .. 24

Corrosion in Marine Environments

Corrosion in Seawater

Stephen C. Dexter ... 27

Consistency and the Major Ions .. 27

Variability of the Minor Ions .. 30

Effect of Pollutants .. 37

Influence of Biological Organisms ... 38

Effect of Flow Velocity ... 40

Corrosion in Marine Atmospheres

Richard B. Griffin ... 42

Important Variables ... 42

Modeling of Atmospheric Corrosion—ISO CORRAG

Program .. 51

Corrosion Products ... 57

Atmospheric Corrosion Test Sites .. 57

Corrosion of Metallic Coatings

Barbara A. Shaw, Wilford W. Shaw, Daniel P. Schmidt 61

Thermal Sprayed Coatings ... 61

Hot Dip Coatings .. 65

Electroplated Coatings .. 66

Methods of Protection .. 66

Performance of Organic Coatings

R.D. Granata .. 69

Surface Preparation ... 69

Topside Coating Systems ... 70

Immersion Coatings ... 72

Marine Cathodic Protection

Robert H. Heidersbach, James Brandt, David Johnson,

John S. Smart III ... 73

Cathodic Protection Criteria ... 73

Anode Materials .. 73

Comparison of Impressed-Current and Sacrificial Anode

Systems .. 74

Cathodic Protection of Marine Pipelines 74

Cathodic Protection of Offshore Structures 75

Cathodic Protection of Ship Hulls ... 77

Corrosion in Underground Environments

External Corrosion Direct Assessment Integrated with Integrity

Management

Joseph Pikas .. 79

Four Step ECDA Process .. 79

Step 1: Preassessment (Assessment of Risk

and Threats) .. 79

Step 2: Indirect Examinations ... 81

Step 3: Direct Examination .. 81

Step 4: Post Assessment .. 82

Close-Interval Survey Techniques

Drew Hevle, Angel Kowalski .. 84

CIS Equipment ... 84

Preparation .. 85

Procedures .. 86

Dynamic Stray Current ... 87

Offshore Procedures ... 87

Data Validation ... 87

Data Interpretation ... 88
Corrosion Control for Military Facilities

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrosion in the Military</td>
<td>126</td>
</tr>
<tr>
<td>Vinod S. Agarwala</td>
<td>126</td>
</tr>
<tr>
<td>Introduction</td>
<td>126</td>
</tr>
<tr>
<td>Military Problems</td>
<td>127</td>
</tr>
<tr>
<td>Corrosion Control and Management</td>
<td>132</td>
</tr>
<tr>
<td>Long-Term Strategy to Reduce Cost of Corrosion</td>
<td>134</td>
</tr>
<tr>
<td>Military Specifications and Standards</td>
<td>136</td>
</tr>
<tr>
<td>Norm Clayton</td>
<td>136</td>
</tr>
<tr>
<td>Types of Documents and Designations</td>
<td>136</td>
</tr>
<tr>
<td>Format of Specifications</td>
<td>138</td>
</tr>
<tr>
<td>Sources of Documents</td>
<td>139</td>
</tr>
<tr>
<td>Notable Specifications, Standards, and Handbooks</td>
<td>139</td>
</tr>
<tr>
<td>Department of Defense Corrosion Policy</td>
<td>140</td>
</tr>
<tr>
<td>Corrosion Control for Military Facilities</td>
<td>141</td>
</tr>
<tr>
<td>Ashok Kumar, L.D. Stephenson, Robert H. Heidersbach</td>
<td>141</td>
</tr>
<tr>
<td>The Environment</td>
<td>141</td>
</tr>
<tr>
<td>Case Studies</td>
<td>141</td>
</tr>
<tr>
<td>Emerging Corrosion-Control Technologies</td>
<td>144</td>
</tr>
<tr>
<td>Ground Vehicle Corrosion</td>
<td>148</td>
</tr>
<tr>
<td>I. Carl Handsy, John Repp</td>
<td>148</td>
</tr>
<tr>
<td>Background</td>
<td>148</td>
</tr>
<tr>
<td>Requirements for Corrosion Control</td>
<td>148</td>
</tr>
<tr>
<td>Procurement Document</td>
<td>148</td>
</tr>
<tr>
<td>Testing Systems to Meet the Army’s Needs</td>
<td>149</td>
</tr>
<tr>
<td>Supplemental Corrosion Protection</td>
<td>149</td>
</tr>
<tr>
<td>Improved Maintenance Procedures</td>
<td>150</td>
</tr>
<tr>
<td>Considerations for Corrosion in Design</td>
<td>150</td>
</tr>
<tr>
<td>Armament Corrosion</td>
<td>151</td>
</tr>
<tr>
<td>Nicholas Warchol</td>
<td>151</td>
</tr>
<tr>
<td>Overview of Design, In-Process, Storage, and In-Field Problems</td>
<td>151</td>
</tr>
<tr>
<td>Design Considerations</td>
<td>151</td>
</tr>
<tr>
<td>In-Process Considerations</td>
<td>152</td>
</tr>
<tr>
<td>Storage Considerations</td>
<td>154</td>
</tr>
<tr>
<td>In-Field Considerations</td>
<td>154</td>
</tr>
<tr>
<td>High-Temperature Corrosion in Military Systems</td>
<td>156</td>
</tr>
<tr>
<td>David A. Shifer</td>
<td>156</td>
</tr>
<tr>
<td>High-Temperature Corrosion and Degradation Processes</td>
<td>156</td>
</tr>
<tr>
<td>Boilers</td>
<td>156</td>
</tr>
<tr>
<td>Diesel Engines</td>
<td>161</td>
</tr>
<tr>
<td>Gas Turbine Engines</td>
<td>162</td>
</tr>
<tr>
<td>Incinerators</td>
<td>164</td>
</tr>
<tr>
<td>Finishing Systems for Naval Aircraft</td>
<td>171</td>
</tr>
<tr>
<td>Kevin J. Kovaleski, David F. Palley</td>
<td>171</td>
</tr>
<tr>
<td>Standard Finishing Systems</td>
<td>171</td>
</tr>
<tr>
<td>Compliant Coatings Issues and Future Trends</td>
<td>173</td>
</tr>
<tr>
<td>Military Coatings</td>
<td>180</td>
</tr>
<tr>
<td>Joseph T. Menke</td>
<td>180</td>
</tr>
<tr>
<td>Electroplating</td>
<td>180</td>
</tr>
<tr>
<td>Conversion Coating</td>
<td>181</td>
</tr>
<tr>
<td>Supplemental Oils</td>
<td>181</td>
</tr>
<tr>
<td>Paint Coatings</td>
<td>182</td>
</tr>
<tr>
<td>Other Finishes</td>
<td>183</td>
</tr>
<tr>
<td>U.S. Navy Aircraft Corrosion</td>
<td>184</td>
</tr>
<tr>
<td>John E. Benfer</td>
<td>184</td>
</tr>
<tr>
<td>Environment</td>
<td>184</td>
</tr>
<tr>
<td>Aircraft Alloys</td>
<td>184</td>
</tr>
<tr>
<td>Aircraft Inspection</td>
<td>185</td>
</tr>
<tr>
<td>Prevention and Corrosion Control</td>
<td>186</td>
</tr>
<tr>
<td>Examples of Aircraft Corrosion Damage</td>
<td>189</td>
</tr>
<tr>
<td>Military Aircraft Corrosion Fatigue</td>
<td>195</td>
</tr>
<tr>
<td>K.K. Sankaran, R. Perez, H. Smith</td>
<td>195</td>
</tr>
<tr>
<td>Aircraft Corrosion Fatigue Assessment</td>
<td>195</td>
</tr>
<tr>
<td>Causes and Types of Aircraft Corrosion</td>
<td>196</td>
</tr>
<tr>
<td>Impact of Corrosion on Fatigue</td>
<td>197</td>
</tr>
<tr>
<td>Corrosion Metrics</td>
<td>198</td>
</tr>
<tr>
<td>Investigations and Modeling of Corrosion/Fatigue</td>
<td>199</td>
</tr>
<tr>
<td>Interactions</td>
<td>199</td>
</tr>
<tr>
<td>Methodologies for Predicting the Effects of Corrosion on Fatigue</td>
<td>201</td>
</tr>
<tr>
<td>Recent Development and Future Needs</td>
<td>203</td>
</tr>
<tr>
<td>Corrosion of Electronic Equipment in Military Environments</td>
<td>205</td>
</tr>
<tr>
<td>Joseph T. Menke</td>
<td>205</td>
</tr>
<tr>
<td>An Historical Review of Corrosion Problems</td>
<td>205</td>
</tr>
<tr>
<td>Examples of Corrosion Problems</td>
<td>206</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Corrosion Inspection</td>
<td>571</td>
</tr>
<tr>
<td>Jack Tinnea</td>
<td>571</td>
</tr>
<tr>
<td>Corrosion Condition Surveys</td>
<td>571</td>
</tr>
<tr>
<td>Assessment of Concrete Quality and Cover</td>
<td>572</td>
</tr>
<tr>
<td>Visual Inspection and Delamination Survey</td>
<td>573</td>
</tr>
<tr>
<td>Reinforcement Potentials</td>
<td>573</td>
</tr>
<tr>
<td>Concrete Resistivity</td>
<td>573</td>
</tr>
<tr>
<td>Chloride and Carbonation Profiles</td>
<td>574</td>
</tr>
<tr>
<td>Corrosion Rate Testing and Other Advanced Techniques</td>
<td>575</td>
</tr>
<tr>
<td>Inspection of Steel Elements</td>
<td>575</td>
</tr>
<tr>
<td>Corrosion-Resistant Reinforcement</td>
<td>575</td>
</tr>
<tr>
<td>Jack Tinnea</td>
<td>575</td>
</tr>
<tr>
<td>Approaches to Corrosion Resistance</td>
<td>576</td>
</tr>
<tr>
<td>Epoxy-Coated Reinforcement</td>
<td>576</td>
</tr>
<tr>
<td>Stainless Steels and Microcomposite Alloys</td>
<td>578</td>
</tr>
<tr>
<td>Galvanized Reinforcement</td>
<td>580</td>
</tr>
<tr>
<td>Performance of Weathering Steel in North America</td>
<td>580</td>
</tr>
<tr>
<td>Frank Pianca</td>
<td>580</td>
</tr>
<tr>
<td>Weathering Steel as a Material</td>
<td>580</td>
</tr>
<tr>
<td>Rate of Corrosion of Weathering Steel</td>
<td>580</td>
</tr>
<tr>
<td>Recommendations and Considerations on the Use of Weathering Steel</td>
<td>581</td>
</tr>
<tr>
<td>Coatings</td>
<td>582</td>
</tr>
<tr>
<td>Bryant 'Web' Chandler</td>
<td>582</td>
</tr>
<tr>
<td>Barrier Coatings for Steel</td>
<td>582</td>
</tr>
<tr>
<td>Concrete Sealers</td>
<td>583</td>
</tr>
<tr>
<td>Electrochemical Techniques: Cathodic Protection, Chloride Extraction, and Realkalization</td>
<td>583</td>
</tr>
<tr>
<td>Jack Tinnea</td>
<td>584</td>
</tr>
<tr>
<td>Cathodic Protection</td>
<td>584</td>
</tr>
<tr>
<td>Electrochemical Chloride Extraction (ECE) and Realkalization</td>
<td>590</td>
</tr>
<tr>
<td>Corrosion in the Air Transportation Industry</td>
<td>598</td>
</tr>
<tr>
<td>Alain Adjorlolo</td>
<td>598</td>
</tr>
<tr>
<td>Corrosion Basics</td>
<td>598</td>
</tr>
<tr>
<td>Commonly Observed Forms of Airplane Corrosion</td>
<td>599</td>
</tr>
<tr>
<td>Factors Influencing Airplane Corrosion</td>
<td>600</td>
</tr>
<tr>
<td>Service-Related Factors</td>
<td>605</td>
</tr>
<tr>
<td>Assessing Fleet Corrosion History</td>
<td>606</td>
</tr>
<tr>
<td>Airworthiness, Corrosion, and Maintenance</td>
<td>607</td>
</tr>
<tr>
<td>New Fleet Design: Establishing Rule-Based Corrosion Management Tools</td>
<td>610</td>
</tr>
<tr>
<td>New Airplane Maintenance</td>
<td>611</td>
</tr>
<tr>
<td>Corrosion in the Microelectronics Industry</td>
<td>613</td>
</tr>
<tr>
<td>Jianhai Qiu</td>
<td>613</td>
</tr>
<tr>
<td>Characteristics of Corrosion in Microelectronics</td>
<td>613</td>
</tr>
<tr>
<td>Common Sources of Corrosion</td>
<td>614</td>
</tr>
<tr>
<td>Mechanisms of Corrosion in Microelectronics</td>
<td>616</td>
</tr>
<tr>
<td>Corrosion Control and Prevention</td>
<td>620</td>
</tr>
<tr>
<td>Corrosion Tests</td>
<td>620</td>
</tr>
<tr>
<td>Corrosion in Semiconductor Wafer Fabrication</td>
<td>623</td>
</tr>
<tr>
<td>Mercy Thomas, Gary Hanvy, Khuzema Sulemanji</td>
<td>623</td>
</tr>
<tr>
<td>Corrosion During Fabrication</td>
<td>623</td>
</tr>
<tr>
<td>Corrosion Due to Environmental Effects</td>
<td>626</td>
</tr>
<tr>
<td>Corrosion in the Assembly of Semiconductor Integrated Circuits</td>
<td>629</td>
</tr>
<tr>
<td>A.C. Tan</td>
<td>629</td>
</tr>
<tr>
<td>Factors Causing Corrosion</td>
<td>629</td>
</tr>
<tr>
<td>Chip Corrosion</td>
<td>630</td>
</tr>
<tr>
<td>Oxidation of Tin and Tin Lead Alloys (Solders)</td>
<td>630</td>
</tr>
<tr>
<td>Mechanism of Tarnished Leads (Terminations)</td>
<td>630</td>
</tr>
<tr>
<td>Controlling Tarnished Leads at the Assembly</td>
<td>633</td>
</tr>
<tr>
<td>Corrosion in Passive Electrical Components</td>
<td>634</td>
</tr>
<tr>
<td>Stan Silvas</td>
<td>634</td>
</tr>
<tr>
<td>Halide-Induced Corrosion</td>
<td>634</td>
</tr>
<tr>
<td>Organic-Acid-Induced Corrosion</td>
<td>636</td>
</tr>
<tr>
<td>Electrochemical Metal Migration (Dendrite Growth)</td>
<td>638</td>
</tr>
<tr>
<td>Silver Tarnish</td>
<td>640</td>
</tr>
<tr>
<td>Fretting</td>
<td>641</td>
</tr>
<tr>
<td>Metal Whiskers</td>
<td>641</td>
</tr>
<tr>
<td>Corrosion and Related Phenomena in Portable Electronic Assemblies</td>
<td>643</td>
</tr>
<tr>
<td>Pudigandla Viswanadham, Sridhar Canumalla</td>
<td>643</td>
</tr>
<tr>
<td>Forms of Corrosion Not Unique to Electronics</td>
<td>643</td>
</tr>
<tr>
<td>Forms of Corrosion Unique to Electronics</td>
<td>645</td>
</tr>
<tr>
<td>Corrosion of Some Metals Commonly Found in Electronic Packaging</td>
<td>646</td>
</tr>
<tr>
<td>Examples from Electronic Assemblies</td>
<td>647</td>
</tr>
<tr>
<td>Future Trends</td>
<td>650</td>
</tr>
<tr>
<td>Corrosion in the Chemical Processing Industry</td>
<td>652</td>
</tr>
<tr>
<td>Effects of Process and Environmental Variables</td>
<td>652</td>
</tr>
<tr>
<td>Bernard S. Covino, Jr.</td>
<td>652</td>
</tr>
<tr>
<td>Plant Environment</td>
<td>652</td>
</tr>
<tr>
<td>Cooling Water</td>
<td>652</td>
</tr>
<tr>
<td>Steam</td>
<td>652</td>
</tr>
<tr>
<td>Startup, Shutdown, and Downtime Conditions</td>
<td>653</td>
</tr>
<tr>
<td>Seasonal Temperature Changes</td>
<td>653</td>
</tr>
<tr>
<td>Variable Process Flow Rates</td>
<td>653</td>
</tr>
<tr>
<td>Impurities</td>
<td>653</td>
</tr>
<tr>
<td>Corrosion under Insulation</td>
<td>654</td>
</tr>
<tr>
<td>Hira S. Ahluwalia</td>
<td>654</td>
</tr>
<tr>
<td>Corrosion of Steel under Insulation</td>
<td>654</td>
</tr>
<tr>
<td>Corrosion of Stainless Steel under Insulation</td>
<td>656</td>
</tr>
<tr>
<td>Prevention of CUI</td>
<td>656</td>
</tr>
<tr>
<td>Inspection for CUI</td>
<td>656</td>
</tr>
<tr>
<td>Corrosion by Sulfuric Acid</td>
<td>659</td>
</tr>
<tr>
<td>S.K. Brubaker</td>
<td>659</td>
</tr>
<tr>
<td>Carbon Steel</td>
<td>660</td>
</tr>
<tr>
<td>Cast Irons</td>
<td>660</td>
</tr>
<tr>
<td>Austenitic Stainless Steels</td>
<td>660</td>
</tr>
<tr>
<td>Higher Austenitic Stainless Steels</td>
<td>662</td>
</tr>
<tr>
<td>Higher Chromium Fe-Ni-Mo Alloys</td>
<td>662</td>
</tr>
<tr>
<td>High Cr-Fc-Ni Alloy</td>
<td>662</td>
</tr>
<tr>
<td>Nickel-Base Alloys</td>
<td>663</td>
</tr>
<tr>
<td>Other Metals and Alloys</td>
<td>664</td>
</tr>
<tr>
<td>Nonmetals</td>
<td>665</td>
</tr>
<tr>
<td>Corrosion by Nitric Acid</td>
<td>668</td>
</tr>
<tr>
<td>Hira S. Ahluwalia, Paul Eyre, Michael Davies, Te-Lin Yau</td>
<td>668</td>
</tr>
<tr>
<td>Carbon and Alloy Steels</td>
<td>668</td>
</tr>
<tr>
<td>Stainless Steels</td>
<td>668</td>
</tr>
<tr>
<td>Other Austenitic Alloys</td>
<td>670</td>
</tr>
<tr>
<td>Aluminum Alloys</td>
<td>670</td>
</tr>
</tbody>
</table>
Corrosion by Phosphoric Acid

Corrosion by Ammonia

Corrosion by Organic Solvents

Corrosion by Hydrogen Chloride and Hydrochloric Acid

Corrosion by Hydrogen Fluoride and Hydrofluoric Acid

Corrosion by Alkalis

Corrosion by Ammonia

Corrosion by Phosphoric Acid

Corrosion by Mixed Acids and Salts

Corrosion by Organic Solvents

L.A. Scribner

J.R. Cram

H.S. Jennings

E.L. Liening

Harry Dykstra

Max D. Moskal