This Volume is a collective effort involving hundreds of technical specialists. It brings together a wealth of information from worldwide sources to help scientists, engineers, and technicians solve current and long-range problems.

Great care is taken in the compilation and production of this Volume, but it should be made clear that NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE GIVEN IN CONNECTION WITH THIS PUBLICATION. Although this information is believed to be accurate by ASM, ASM cannot guarantee that favorable results will be obtained from the use of this publication alone. This publication is intended for use by persons having technical skill, at their sole discretion and risk. Since the conditions of product or material use are outside of ASM’s control, ASM assumes no liability or obligation in connection with any use of this information. No claim of any kind, whether as to products or information in this publication, and whether or not based on negligence, shall be greater in amount than the purchase price of this product or publication in respect of which damages are claimed. THE REMEDY HEREBY PROVIDED SHALL BE THE EXCLUSIVE AND SOLE REMEDY OF BUYER, AND IN NO EVENT SHALL EITHER PARTY BE LIABLE FOR SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES WHETHER OR NOT CAUSED BY OR RESULTING FROM THE NEGLIGENCE OF SUCH PARTY. As with any material, evaluation of the material under end-use conditions prior to specification is essential. Therefore, specific testing under actual conditions is recommended.

Nothing contained in this Volume shall be construed as a grant of any right of manufacture, sale, use, or reproduction, in connection with any method, process, apparatus, product, composition, or system, whether or not covered by letters patent, copyright, or trademark, and nothing contained in this Volume shall be construed as a defense against any alleged infringement of letters patent, copyright, or trademark, or as a defense against liability for such infringement.

Comments, criticisms, and suggestions are invited, and should be forwarded to ASM International.
Foreword

Whenever a new volume is considered for addition to the ASM Handbook series, great care and thought are taken to ensure the subject matter meets a demand from the market and that the leading technical experts are at the helm to develop the content. ASM International’s latest effort, ASM Handbook, Volume 24, Additive Manufacturing Processes, hits both marks. The list of contributors reads like a who’s who of the additive manufacturing world, and together they have created a comprehensive compendium of reference information on the growing topic of additive manufacturing. This handbook is a practical resource covering the processes used to additively manufacture polymers, ceramics, and metals, including direct-write methods.

ASM International is grateful for the work and dedication of volunteer editors, authors, and reviewers who devoted their time and expertise to develop a reference publication of the highest technical and editorial caliber. A special note of thanks is offered to the volume and division editors who put forth extraordinary efforts to keep this project focused and completed on schedule.

Dr. Zi-Kui Liu, FASM
President
ASM International

Ron Aderhold
Acting Managing Director
ASM International
Preface

For almost 100 years the ASM Handbook has captured the ongoing growth of applied knowledge covering the complete array of industrial materials and manufacturing processes. Within this archive, a major theme is the progressive development of materials having ever greater strength and heat resistance, primarily to meet performance objectives of transportation and defense applications. Unfortunately, the characteristics of such materials present challenges to the principal shaping processes of forming and material removal in reaching the complex shapes required. This, in turn, led to a parallel trend toward net shape to reduce or eliminate the negative aspects of material removal.

In more recent times, however, a completely different approach to shape making has evolved in which basic materials in liquid or particulate form, as well as filament or sheet form, are assembled point by point or layer by layer into the objective shape. Using the pinpoint accuracy of a laser, miniscule droplets from a printhead, or extrusion of material through a narrow nozzle, a variety of clever mechanisms have been devised to carry out these high-resolution building processes, now collectively known as additive manufacturing (AM), and frequently referred to as 3D printing. The current and rapidly expanding importance of AM merits its capture within this, ASM Handbook, Volume 24, Additive Manufacturing Processes. As a starting point, the first division presents an overview of the subject as well as deep insights into its historical development, authored by some of the key participants in that history as they trace the evolution of AM from its pre-computer roots to early commercialization of (largely) rapid prototyping machines, to modern serious tools for production of parts from all material classes.

A primary result of these newfound processes is the capability to produce shapes of greater complexity and with more refined geometric detail than can be obtained by conventional processes covered in previous ASM Handbook volumes. In fact, such capabilities enable designers and manufacturers to think beyond net shape and toward optimum shape – the placement of material only where it is needed to carry out the required transmission of stress, temperature, or electromagnetic fields. In addition, thermo-fluid management systems, such as heat exchangers and molding tools, can incorporate non-round and non-straight internal channels for enhanced efficiency. A further advantage of AM’s geometric flexibility is the combination of multiple parts into one component, eliminating assembly operations as well as individual part tooling and inventory. One highly publicized example involves the integration of some 20 parts into one fuel injection nozzle for aircraft turbine engines. To illustrate the advanced industrial development of AM, this component has been in mass production for more than a year at this writing.

Another exciting opportunity afforded by AM is modification of a material’s properties. The introduction of engineered porosity (i.e., printing material around void spaces) and lattice structures within the boundaries of the part effectively reduces its density, which is of great value in any transportation related application. The same approach can be used to spatially modify the localized density, strength, and thermal properties of a part, enabling functionally gradient materials to accommodate different needs in different locations of a part or component. In an advanced form, AM enables spatial variation of properties by building the parts with different materials point-to-point, or by varying process parameters to accomplish different microstructures within the same part.

This wide latitude in shape, structure, and compositional control has injected a spirit of excitement in the materials, design, and manufacturing communities. Materials science and engineering has a new field in which to apply the basic concepts of materials structure through advanced tools for material characterization. Likewise, designers now wander into a new world of possibilities opened by the seemingly limitless geometric flexibility of AM. Manufacturers can now consider a new array of development and production processes with potentially more efficient materials use, reduced time to market, and greater performance.

This Volume of the ASM Handbook series seeks to promote the excitement of AM by providing the latest knowledge in materials, processes, and applications. Following the history and introductory division, the complete suite of materials and processes for polymers and ceramics are detailed in the next two divisions. The fourth division describes the metal AM processes, but begins with in-depth description of the production and characterization of metal powders; such information has an outsized effect on success or failure of metal AM processes. The fifth division describes AM processing of a wide variety of materials, illustrating differences in characteristics of metal alloys produced by AM processes in contrast to conventional processes. The final division covers direct-write processes, taking advantage of AM processes to combine materials and devices for multifunctional engineering applications. Additional volumes are planned covering design and applications for additive manufacturing.

We wish to acknowledge the immense efforts by the article authors and division editors to bring this volume together. Considerable time is required to complete these assignments which, unfortunately, come at a time when the talents of the authors are in high demand within this rapidly expanding and dynamic industry as it evolves continuously to new levels of achievement.

Howard Kuhn, FASM
David L. Bourell, FASM
William Frazier, FASM
Mohsen Seifi
Contributors

Magnus Ahlfors
Quintus Technologies

Arulselvan Arumugham Akhilan
University of Louisville

Vince Anewenter
Milwaukee School of Engineering

Sundar V. Atre
University of Louisville

John Barnes
The Barnes Group Advisors

Saurabh Basu
Pennsylvania State University

Joseph J. Beaman
University of Texas at Austin

Allison Beese
Pennsylvania State University

Lindsey B. Bezek
Virginia Polytechnic Institute and State University

David L. Bourrell
University of Texas at Austin

Carelyn E. Campbell
National Institute of Standards and Technology

Prem Chahal
Fraunhofer Center for Coatings and Diamond Technologies

Kristin M. Charipar
U.S. Naval Research Laboratory

Yong Chen
University of Southern California

Zhangwei Chen
Shenzhen University

Kenneth Church
nScrypt, Inc.

Brett P. Conner
Youngstown State University

Frank Cooper
Birmingham City University School of Jewellery

Jose Coronel
The University of Texas at El Paso

Chase Cox
MELD Manufacturing Corp.

Corson Cramer
Oak Ridge National Laboratory

Carl Dekker
MET-L-FLO Inc.

E.R. Denlinger
Autodesk Inc.

Phill Dickens
University of Nottingham

Amy Elliott
Oak Ridge National Laboratory

Ravi K. Enneti
Global Tungsten and Powders Corp.

David Espalin
The University of Texas at El Paso

David Fletcher
Cooksongold

Diana Ganzina
SLAC National Accelerator Laboratory

Jerard V. Gordon
Carnegie Mellon University

Robert J. Griffiths
Virginia Tech

Gautam Gupta
University of Louisville

John Halloran
University of Michigan

Adam Hehr
Fabrisonic LLC

Neil Hopkinson
XAAR3D

Timothy Horn
North Carolina State University

Wayne Hung
Texas A&M University

Harish Irrinkin
University of Louisville

Jay Keist
Pennsylvania State University

Dominic Kelly
The University of Texas at El Paso

Shawn Kelly
Oerlikon AM

Heinrich Kestler
Plansee SE

Samyeon Kim
Singapore University of Technology and Design

Edward Kinzel
University of Notre Dame

M.M. Kirka
Oak Ridge National Laboratory

Howard Kuhn
University of Pittsburgh

David K. Leigh
EOS North America

Ming C. Leu
University of Southern California

Xiangjia Li
University of Southern California

Guangyi Ma
Dalian University of Technology

Eric MacDonald
Youngstown State University

John Martin
Youngstown State University

Richard P. Martukanitz
University of Virginia and Commonwealth Center for Advanced Manufacturing

Eric Maynard
Jenike & Johanson

Brian McTiernan
Powdered Metals Consulting LLC

Nicholas Meisel
Pennsylvania State University

P. Michaleris
Autodesk Inc.

Amir Mostafaei
Carnegie Mellon University

Peevush Nandwana
Oak Ridge National Laboratory

Abdalla R. Nassar
Pennsylvania State University
Officers and Trustees of ASM International (2019–2020)

Zi-Kui Liu
President
Pennsylvania State University

Diana Essock
Vice President
Metamark, Inc.

David U. Furrer
Immediate Past President
Pratt & Whitney

Ron Aderhold
Acting Managing Director
Prem K. Aurora
Aurora Engineering Co.

Diana Lados
Worcester Polytechnic Institute

Toni Marechaux
U.S. Department of Defense

Thomas M. Moore
Wavix Inc.

Jason Sebastian
Questek Innovations, LLC

Larry Somrack
NSL Analytical Services, Inc.

Judith A. Todd
Pennsylvania State University

Priti Wanjarra
National Research Council Canada

Ji-Cheng Zhao
University of Maryland

Student Board Members
Kimberly Glebe
Case Western Reserve University

Aswin Kumar
Vanderbilt University

Nisrit Pandey
Carnegie Mellon University

Members of the ASM Handbook Committee (2019–2020)

Craig J. Schroeder, Chair
Element

Scott M. Olig, Vice Chair
U.S. Naval Research Lab

Alan P. Druschitz, Immediate Past Chair
Virginia Tech

Sahil Ali
AVIVA Metals

Kevin R. Anderson
Mercury Marine

Scott Beckwith
BTG Composites Inc.

Lichun (Leigh) Chen
Superior Essex

Narendra B. Dahotre
University of North Texas

John Harkness
Retired

Martin Jones
Ford Motor Company

Brad Lindner
Element Materials Technology

Dana Medlin
EAG Laboratories, Inc.

Roger Narayan
UNC-NCsu Dept of Biomed Eng

Valery Rudnev
Inductoheat Incorporated

Muthukumarasamy Sadayappan
Natural Resources Canada

Satyam Suraj Sahay
John Deere Technology Center India

Jeffery S. Smith
Material Processing Technology LLC

John M. Tartaglia
Element Materials Technology Wixom Inc.

George E. Totten
G.E. Totten & Associates LLC

George Vander Voort, Immediate Past Chair
Vander Voort Consulting L.L.C.

Christopher Viney
University of California –MERCED

Junsheng Wang
Beijing Institute of Technology

Valerie L. Wiesner
NASA Glenn Research Center

Dehua Yang
Ebatco

Chairs of the ASM Handbook Committee

J.F. Harper
(1923–1926) (Member 1923–1926)

W.J. Merten
(1927–1930) (Member 1923–1933)

L.B. Case
(1931–1933) (Member 1927–1933)

C.H. Herty, Jr.
(1934–1936) (Member 1930–1936)

J.P. Gill
(1937) (Member 1934–1937)

R.L. Dowdell
(1938–1939) (Member 1935–1939)

G.V. Luerssen
(1943–1947) (Member 1942–1947)

J.B. Johnson
(1948–1951) (Member 1944–1951)

E.O. Dixon

N.E. Promisel

R.W.E. Leiter

D.J. Wright
(1964–1965) (Member 1959–1967)

J.D. Graham

W.A. Stadler

G.J. Shubat

R. Ward

G.N. Maniar

M.G.H. Wells

J.L. McCall

L.J. Korb

T.D. Cooper

D.D. Huffman

D.L. Olson

R.J. Austin

W.L. Mankins

M.M. Gauthier

C.V. Darragh

Henry E. Fairman

Jeffrey A. Hawk

Larry D. Hanke

Kent L. Johnson

Craig D. Clauser

Joseph W. Newkirk
(2012–2014) (Member 2005–)

George Vander Voort
(2014–2016) (Member 1997–)

Alan P. Druschitz
(2016–2019) (Member 2009–)

Craig Schroeder
(2019–present) (Member 2016–)
Policy on Units of Measure

By a resolution of its Board of Trustees, ASM International has adopted the practice of publishing data in both metric and customary U.S. units of measure. In preparing this Handbook, the editors have attempted to present data in metric units based primarily on Système International d’Unités (SI), with secondary mention of the corresponding values in customary U.S. units. The decision to use SI as the primary system of units was based on the aforementioned resolution of the Board of Trustees and the widespread use of metric units throughout the world.

For the most part, numerical engineering data in the text and in tables are presented in SI-based units with the customary U.S. equivalents in parentheses (text) or adjoining columns (tables). For example, pressure, stress, and strength are shown both in SI units, which are pascals (Pa) with a suitable prefix, and in customary U.S. units, which are pounds per square inch (psi). To save space, large values of psi have been converted to kips per square inch (ksi), where 1 ksi = 1000 psi. The metric tonne (kg) has sometimes been shown in megagrams (Mg). Some strictly scientific data are presented in SI units only.

To clarify some illustrations, only one set of units is presented on artwork. References in the accompanying text to data in the illustrations are presented in both SI-based and customary U.S. units. On graphs and charts, grids corresponding to SI-based units usually appear along the left and bottom edges. Where appropriate, corresponding customary U.S. units appear along the top and right edges.

Data pertaining to a specification published by a specification-writing group may be given in only the units used in that specification or in dual units, depending on the nature of the data. For example, the typical yield strength of steel sheet made to a specification written in customary U.S. units would be presented in dual units, but the sheet thickness specified in that specification might be presented only in inches.

Data obtained according to standardized test methods for which the standard recommends a particular system of units are presented in the units of that system. Wherever feasible, equivalent units are also presented. Some statistical data may also be presented in only the original units used in the analysis.

Conversions and rounding have been done in accordance with IEEE/ASTM SI-10, with attention given to the number of significant digits in the original data. For example, an annealing temperature of 1570 °F contains three significant digits. In this case, the equivalent temperature would be given as 855 °C; the exact conversion to 854.44 °C would not be appropriate. For an invariant physical phenomenon that occurs at a precise temperature (such as the melting of pure silver), it would be appropriate to report the temperature as 961.93 °C or 1763.5 °F. In some instances (especially in tables and data compilations), temperature values in °C and °F are alternatives rather than conversions.

The policy of units of measure in this Handbook contains several exceptions to strict conformance to IEEE/ASTM SI-10; in each instance, the exception has been made in an effort to improve the clarity of the Handbook. The most notable exception is the use of g/cm³ rather than kg/m³ as the unit of measure for density (mass per unit volume). SI practice requires that only one virgule (diagonal) appear in units formed by combination of several basic units. Therefore, all of the units preceding the virgule are in the numerator and all units following the virgule are in the denominator of the expression; no parentheses are required to prevent ambiguity.
Contents

Additive Manufacturing Overview
David Bourell, University of Texas at Austin 1

Introduction to Additive Manufacturing
David Bourell, University of Texas at Austin.................................. 3

Terry Wohlers, Wohlers Associates Inc. ... 3

Vat Photopolymerization ... 5

Material Jetting ... 5

Powder Bed Fusion .. 6

Directed Energy Deposition ... 7

Material Extrusion .. 8

Binder Jetting ... 9

Sheet Lamination .. 9

History of Additive Manufacturing
David L. Bourell and Joseph J. Beaman, University of Texas at Austin Terry Wohlers, Wohlers Associates Inc. ... 11

Additive Manufacturing Terminology ... 11

Historical Overview .. 11

Additive Manufacturing Prehistory (~1860–1965) 11

Modern Additive Manufacturing (~1981–Late 2000s) 14

Growth of Additive Manufacturing since 2010 17

Standards Development .. 17

Design and Manufacturing Implications of Additive Manufacturing
David Rosen, Georgia Institute of Technology.................................. 19

Sanmeon Kim, Singapore University of Technology
and Design .. 19

Characteristics of Additive Manufacturing Processes 19

Purposes of Additive Manufacturing ... 20

Design Implications of Additive Manufacturing 21

Manufacturing Implications of Additive Manufacturing 26

Polymer Additive Manufacturing Processes
David L. Bourell, University of Texas at Austin 31

Vat Polymerization
Don Smith, Baxter Healthcare Corp. (Retired) 33

Feedstocks for the Process .. 34

Safety Issues with Feedstock Handling ... 35

Manufacturing Issues .. 36

Postprocessing/Finishing ... 37

Part Properties and Common Defects .. 38

Special Topics ... 38

Material Extrusion Additive Manufacturing Systems
David A. Prawel, Colorado State University 40

Melt Extrusion 3D Printing .. 40

Viscous Extrusion 3D Printing ... 50

Powder Bed Fusion of Polymers
David K. Leigh, EOS North America.. 52

David Bourell, University of Texas at Austin 52

Thermal Issues ... 53

Safety Considerations ... 54

Manufacturing Issues ... 54

Postprocessing and Finishing ... 55

Common Defects and Part Properties ... 55

Case Studies in Polymer Powder Bed Fusion 56

Material Jetting of Polymers
Christopher B. Williams and Lindsey B. Bezek, Virginia
Polytechnic Institute and State University 58

Process Overview .. 58

Process Characteristics ... 59

Materials ... 61

Part Design and Processing Considerations 63

Applications ... 64

The Future of Polymer Material Jetting .. 66

Modeling for Polymer Additive Manufacturing Processes
Neil Hopkinson, XAAR3D

David Rosen, Georgia Institute of Technology 69

Introduction ... 69

Material Extrusion .. 69

Polymer Powder-Bed Sintering/Fusion 70

Vat Photopolymerization .. 73

Material Jetting ... 75

Ceramic Additive Manufacturing Processes
Ming Leu, Missouri University of Science and Technology 79

Vat-Photopolymerization-Based Ceramic Manufacturing
Xiangjia Li and Yong Chen, University of Southern California 81

Vat Photopolymerization .. 82

Vat-Photopolymerization-Based Ceramic Fabrication 83

Postprocessing .. 86

Property Identification ... 88

Summary and Outlook ... 92

Material Extrusion Based Ceramic Additive Manufacturing
Wenbin Li and Ming C. Leu, Missouri University of Science and Technology ... 97

Processes .. 97

Post-Processing ... 105

Mechanical Properties .. 106

Future Research ... 107

Innovation Opportunities .. 107

Material Jetting of Ceramics
Brett P. Conner, Youngstown State University 112

Ink Properties and Delivery ... 112

Applications ... 114

Binder Jetting of Ceramics
Li Yang, University of Louisville .. 118

Introduction ... 118

Processability Considerations for Binder Jetting Additive Manufacturing of Ceramics .. 118

Binder Jetting Additive Manufacturing Technology
Potential .. 125

Summary .. 128

Directed-Energy Deposition for Ceramic Additive Manufacturing
Fangyong Niu, Shuai Yan, Guangyi Ma, and Dongjiang Wu, Dalian University of Technology .. 131

Directed-Energy Deposition Equipment for Ceramic Additive Manufacturing .. 133

Directed-Energy Deposition Materials for Ceramic Additive Manufacturing .. 134
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultrasonic and Thermal Metal Embedding for Polymer Additive Manufacturing</td>
<td></td>
</tr>
<tr>
<td>Carolyn Carradero Santiago and Eric MacDonald, Youngstown State University</td>
<td></td>
</tr>
<tr>
<td>Jose Coronel, Dominic Kelly, Ryan Wicker and David Espalin, The University of Texas at El Paso</td>
<td>456</td>
</tr>
<tr>
<td>Wire Embedding in Additive Manufacturing</td>
<td>457</td>
</tr>
<tr>
<td>Applications of Wire Embedding in Additive Manufacturing</td>
<td>458</td>
</tr>
<tr>
<td>Conclusion</td>
<td>460</td>
</tr>
<tr>
<td>Reference Information</td>
<td>463</td>
</tr>
<tr>
<td>Index</td>
<td>465</td>
</tr>
</tbody>
</table>